Cryptanalysis of Bluetooth Keystream Generator Two-level E0

Yi LU and Serge VAUDENAY

http://lasecwww.epfl.ch

EPFL

Cryptanalysis of Bluetooth Keystream Generator Two-level E0 by Yi LU and Serge VAUDENAY - p.1/23

Outline

- Review on Bluetooth Two-level E0
- One Resynchronization Flaw
- First Attacks
- Extended Key-recovery Attack
- Conclusion

Review on Bluetooth Two-level E0

G_1, G_2, G_3 : affine transformations

The Core of Bluetooth E0

$$s_t = x_t^1 \oplus x_t^2 \oplus x_t^3 \oplus x_t^4 \oplus c_t^0.$$

Cryptanalysis of Bluetooth Keystream Generator Two-level E0 by Yi LU and Serge VAUDENAY - p.4/23

The Core of Bluetooth E0 (Cont'd)

• The bit length L_i of each R_i is:

$$\begin{array}{rcl}
L_1 &=& 25 \\
L_2 &=& 31 \\
L_3 &=& 33 \\
L_4 &=& 39
\end{array}
\right\} \Longrightarrow \sum_i L_i = 128.$$

• Statistical properties of $\{c_t^0\}$ were well-studied by Lu-Vaudenay'04 based on previous work of Hermelin-Nyberg'99, Ekdahl-Johansson'00, Golić et al.'02. The Core of Bluetooth E0 (Cont'd)

The two largest biases up to 26 consecutive bit $\{c_t^0\}$ are:

$$\Pr(c_t^0 \oplus c_{t+1}^0 \oplus c_{t+2}^0 \oplus c_{t+3}^0 \oplus c_{t+4}^0 = 1) = \frac{1}{2} + \frac{\lambda}{2},$$
$$\Pr(c_t^0 \oplus c_{t+5}^0 = 0) = \frac{1}{2} + \frac{\lambda}{2},$$

where $\lambda = \frac{25}{256}$.

Content

- Review on Bluetooth Two-level E0
- One Resynchronization Flaw
- First Attacks
- Extended Key-recovery Attack
- Conclusion

One Resynchronization Flaw

Resynchronization Flaw: Closer Look at G_3

where

- $R = (M \circ G_1)(K) \oplus (M \circ G_2)(P)$,
- α_t 's = $\{c_t^0\}$ produced by E0 level One.

Effect of Permutation G_3

The first 24 output bits of LFSRs at Level Two are:

$$R_1 \quad S_{-127}, \dots, S_{-120} \quad S_{-95}, \dots, S_{-88} \quad S_{-63}, \dots, S_{-56}$$

$$R_2 \quad S_{-119}, \dots, S_{-112} \quad S_{-87}, \dots, S_{-80} \quad S_{-55}, \dots, S_{-48}$$

$$R_3 \quad S_{-79}, \dots, S_{-72} \quad S_{-47}, \dots, S_{-40} \quad S_{-23}, \dots, S_{-16}$$

$$R_4 \quad S_{-71}, \dots, S_{-64} \quad S_{-39}, \dots, S_{-32} \quad S_{-15}, \dots, S_{-8}$$

where $S_t = R_t \oplus \alpha_t$ denotes output of E0 Level One.

Correlation of Bluetooth Two-level E0

Let

- $U = G_3 \circ R = (G_3 \circ M \circ G_1)(K) \oplus (G_3 \circ M \circ G_2)(P).$
- β_t 's = $\{c_t^0\}$ produced by E0 level Two.

THEOREM. Assuming independence of α_t 's and β_t 's, within one frame, we have

$$\Pr\left(\bigoplus_{j=0}^{4} \left(z_{t+j} \oplus U_{t+j}\right) = 1\right) = \frac{1}{2} + \frac{\lambda^5}{2},$$

for $t \in \{1, \dots, 4\} \cup \{9, \dots, 12\} \cup \{17, \dots, 20\}$.

Content

- Review on Bluetooth Two-level E0
- One Resynchronization Flaw
- First Attacks
- Extended Key-recovery Attack
- Conclusion

First Attacks on Two-level E0: Distinguishing Attack

By linear cryptanalysis, we expect that with $\lambda^{-10} \approx 2^{34}$ samples,

$$\bigoplus_{j=0}^{4} \left(z_{t+j} \oplus U_{t+j} \right) = 1$$

holds for $t \in \{1, ..., 4\} \cup \{9, ..., 12\} \cup \{17, ..., 20\}$ most of the time.

As $U^i \oplus U^j = (G_3 \circ M \circ G_2)(P^i \oplus P^j)$ is known, we can recover one bit $\oplus_{j=0}^4 U^1_{1+j}$ separately with two sets of 2^{34} frames and expect a unique solution.

One Easy Decoding Problem

Given *L*-bit sequences s^1, \ldots, s^m and $\delta^1, \ldots, \delta^m$, such that $\delta^1 = \mathbf{0}$ and $\delta^i \neq \delta^j$ for all $i \neq j$, find the *L*-bit sequence r^1 that maximizes

$$N(r^{1}) = \sum_{i=1}^{m} \sum_{t=1}^{L} (s_{t}^{i} \oplus r_{t}^{i}),$$

where
$$r_t^i = r_t^1 \oplus \delta_t^i$$
 for $i = 1, \dots, m$ and $t = 1, \dots, L$.

Solution:

$$r_t^1 = \text{minority}\{s_t^i \oplus \delta_t^i : i = 1, \dots, m\}$$

for all t = 1, ..., L.

Distinguishing Attack Complexities

Туре	Frames	Data and Time
basic	2^{35}	2^{37}
improved	2^{33}	2^{36}

First Attacks on Two-level E0: Key-recovery Attack

- Fixing $t \in \{1, \ldots, 4\} \cup \{9, \ldots, 12\} \cup \{17, \ldots, 20\}$, we independently recover twelve key bits by previous method.
- Then, we try exhaustively for the remaining key bits.

Let $|\mathcal{K}|$ be the effective key length.

Frames	Data	Time	Memory	
2^{34}	$2^{38.6}$	$2^{34} + 2^{ \mathcal{K} - 13}$	2^{34}	

Note that this is the first non-trivial attack on two-level E0 with variable key length.

Content

- Review on Bluetooth Two-level E0
- One Resynchronization Flaw
- First Attacks
- Extended Key-recovery Attack
- Conclusion

Extended Attack: Main Idea

Recall that

$$\bigoplus_{j=0}^{4} (z_{t+j} \oplus U_{t+j})$$

corresponds to XOR of five i.i.d. biased bits.

 \implies Try to cancel one biased bit for all frames by exhaustive search!

Partial Key-recovery Attack

Partial Key-recovery Attack: Main Algorithm

```
Let f : \{0,1\} \rightarrow \mathbf{R} to be determined later.
```

```
fix t'
for all 12-bit \mathcal{K} do
   initialize counters to zero \mu_0, \mu_1
   for each frame i do
       for all 4-bit FSM state \sigma at time t' - 3 do
           compute \alpha_{t'-2}, \alpha_{t'-1}, \alpha_{t'}
           b \longleftarrow \bigoplus_{i=0}^{4} (z_{t+j} \oplus U_{t+j}) \oplus \bigoplus_{i=0}^{4} \alpha_{t'-j}
           increment \mu_b
       end for
   end for
   G_{\mathcal{K}} = \sum_{b} \mu_{b} f(b)
end for
output \mathcal{K} with the largest G_{\mathcal{K}}
```

Partial Key-recovery Attack: (Cont'd)

Since we know

$$\mathrm{bias}(b) = \left\{ \begin{array}{ll} \lambda^4, & \mathrm{right}\; \mathcal{K} \; \mathrm{and}\; \mathrm{right}\; \sigma \\ \lambda^6 \approx 0, & \mathrm{otherwise.} \end{array} \right.$$

Using theory of Baignères, Junod and Vaudenay'04, data complexity is minimized when we choose

$$f = \frac{D_1 + 15D_0}{16},$$

where

- D_0 : uniform distribution,
- D_1 : distribution with bias λ^4 .

The Overall Key-recovery Attack: Complexities

Attack	PreComp.	Time	Frames	Data	Space
Fluhrer-Lucks'01	-	2^{73}	-	2^{43}	2^{51}
Fluhrer'02	2^{80}	2^{65}	2	$2^{12.4}$	2^{80}
Golić et al.'02	2^{80}	2^{70}	45	2^{17}	2^{80}
Our Attack	-	2^{40}	2^{35}	$2^{39.6}$	2^{35}

Conclusion

- One resynchronization flaw of Bluetooth two-level E0 was studied.
- Based on the flaw, we propose the short-cut attacks on Bluetooth two-level E0, which doesn't recover the key level by level.
- Considering the fact that the maximum number of available frames is 2^{26} , our attacks still remain academic interest.
- Our attack illustrates theory of statistical attacks by Baignères, Junod and Vaudenay'04.