A Linearization Attack on the Bluetooth Key
Stream (Generator

Frederik Armknecht *

University of Mannheim
68131 Mannheim, Germany
armknecht@th.informatik.uni-mannheim.de

Abstract. In this paper we propose an attack on the key stream gen-
erator underlying the encryption system Eo used in the Bluetooth spec-
ification. We show that the initial value can be recovered by solving a
system of nonlinear equations of degree 4 over the finite field GF(2). This
system of equations can be transformed by linearization into a system of
linear equations with at most 2%3-°7 unknowns. To our knowledge, this
is the best published attack on the key stream generator underlying the
Eo yet.

1 Introduction

The encryption system Eg, which is the encryption system used in the Blue-
tooth specification [1], is a two level system. In both levels the same key stream
generator (KSG) is used. In this paper, we propose an attack on the underlying
KSG. We regard its initial value as the secret key and try to recover it if only
output bits are given. The result of the paper is that this can be done by solving
a system of nonlinear equations (SNE) of degree 4 over the finite field GF(2).
This system of equations can be transformed by linearization into a system of
linear equations (SLE) with at most 223-°7 unknowns.

The paper is structured as follows. In Section 2, the Ey key stream generator
is described. In Section 3, we will show how to get for each clock ¢ a new equa-
tion of degree 4 in the unknown initial value bits which holds with probability
1. Solving this SNE provides the initial value of the key stream generator. In
Section 4, we discuss how the system of nonlinear equations can be solved and
which obstacles have to be overcome. The attack is compared to other published
attacks. Section 5 concludes the paper.

2 Description of the Bluetooth key stream generator
The Ej encryption system is used in the Bluetooth specification [1] for wireless
communication. The encryption is done in two levels. In the first level, a key

* This work has been supported by grant 620307 of the DFG (German Research Foun-
dation)

2 Frederik Armknecht

and a nonce are given to a key stream generator which produces the key for the
second level. In the second level, the same key stream generator uses the second
level key to generate the key stream bits which are XORed to the plaintext bits.
In this paper, we will concentrate on the key stream generator (KSG).

The KSG consists of four regularly clocked Linear Feedback Shift Registers
(LFSR) and four memory bits. With each clock, an output bit z; is produced
depending on the outputs ay, bt, ¢; and d; of the four LFSRs and the four memory
bits (Qt:PtaQt—hPt—l)- Then, the next memory bits Ct+1 = (Qt-i-l:PH-l) are
calculated and so on. The exact definitions are

zZ=0at Db D ®d ® P (1)
Ciy1 =Sir1 DC DT (C—v) (2)

where T'(x1, o) := (xo, o @ x1) and

as + by +c; +dp +2Q + P,
3t+1=(3§+1,82+1):{t t t2t Q¢ tJ 3)

The values for Cy and C; and the contents of the LFSR must be set before
the start, the other values will then be calculated. The LESRs have the lengths
ni = 25, ns = 31, nzg = 33, and ny = 39, and n = ny + ns + ng +nyg = 128 is the
size of the secret key.

3 Building a system of nonlinear equations for the key
stream generator

In this section, we will show that the initial state of the keystream generator can
be reconstructed by solving a system of nonlinear equations of degree 4. With
each clock ¢, the new output z; is produced and the next memory bits Q41 and
P,y are computed. This is done by the following equations (see Appendix A for
the proof):

=0 Db D Dd D P (4)
Qi1 = II4(t) & II3(t) Py & I () Q¢ & I (1) P, Qs & Q¢ & Pr—y (5)
P =ILH SRS Qi ®Qr 1 ® Py &P, (6)

Here, a¢, by, ct, d; are the outputs of the four LFSRs and II;(¢) is the XOR over
all possible products in {ay, by, c¢,d: } of degree k. E. g.,

Ih{t)=a®b & c ® dy
Hz(t) = atbt D arcy D atdt D tht D btdt D Ctdt

If we define the following additional variables

At) = Ha(t) & I3(t) Py © Pr—a
Bt)=IL{t)® ()P, a1

A Linearization Attack on the Bluetooth Key Stream Generator 3

equations (5) and (6) can be rewritten to

Q11 = A(t) ® B(t)Q: (7)
Poy1=Blt) 1O P 1 0P ®Q DQi1 (8)

By multiplying (7) with B(t) we get another equation
0=B(t)(Alt) ® Q: & Qu41) (9)
Equation (8) is equivalent to
Qi®Qi 1 =Blt)®1d P 1 &P &Py (10)
Now we insert (10) into (9) with index ¢ + 1 instead of ¢ and get
0=Bt)(At)2Bt+1)D1® P, ® Pry1 © Piys)

Using (4) we eliminate all memory bits in the equation and get the following
equation which holds for every clock t:

0=1D2_1 D2 D211 D 242
DI (t) - (2e2t42 D 22241 B 2e26—1 P 241 B Ze41 D 242 D 1)
DI (t) - (1D 2e—1 D 2t D 241 D 2e42) © I3(t)ze D L4 (¢)
SIH(t -1 I (t — DI () (1 @ z) & 1 (t — 1) I1>(t)
I (t + Vzppr1 @ IL (t+ DI () 2041 (1 @ 2¢) © 1 (E + 1) 2(t) 241
®IL(t +1) & I (t + 1)1, () (1 @ 2¢) @ I (t + 1)I15(t)
BIL(t+2) ® I (t + 2)I1, (1) (1 ® 2¢) @ I, (t + 2)[1>(t)

With every clock t we get an additional equation which holds with probability
1. This makes it possible to compile a system of nonlinear equations degree 4.
As the unknowns are just the bits of the initial value of the four LFSRs, the
secret key can be recovered by solving the SNE.

Remark that in an LFSR all output bits are a linear combination of the initial
values bits so the number of possibly occurring terms is limited, the upper bound
being 17,440, 047 ~ 22397 (see appendix B for details). In the following section,
we will discuss how this knowledge can be used to solve the SNE.

4 Solving the system of nonlinear equations

We will now concentrate on the question how to solve the system of nonlinear
equations of the previous section.

The simplest method is the so called linearization algorithm. Assume that
a system of nonlinear equations (SNE) with [linearly independent equations
is given. Let T be the number of all different terms occurring in the SNE. If
we replace every occurring term by a new variable, we get a system of linear
equations (SLE) with 7" unknowns. If [= T, then the SNE can be solved by

4 Frederik Armknecht

the usual methods. Obviously, the algorithm can be only successful if enough
linearly independent equations are present.

The maximum number of possibly occurring terms in the SNE is
T = 8,824,350 ~ 22397 (see appendix B for details). The fastest practical
method we are aware of to solve a system of linear equations is Strassen’s al-
gorithm [9]. It requires about 7 - Tlog,7 operations. In this case, the secret key
can be recovered with approximately 267->® operations if at least 223:°7 linearly
independent equations are available. Observe that the system of linear equations
can be constructed in precomputation time. For each attack, it is only necessary
to insert the actual values of the key stream bits z;.

Note that the best known attack against the Ey was proposed by Krause
[6] with time effort 277, given only 128 known key stream bits. The attack by
Fluhrer and Lucks [5] needs about 273 operations if 242 bits are available.

Recently, Courtois [3] developed an improved version of algebraic attacks:
fast algebraic attacks. They allow an even better attack on the Ey keystream
generator.

Let us face again the problem how to get enough linearly independent equa-
tions. With each clock ¢, we get a new equation in the bits of the secret key.
Hence, one strategy is to produce new equations until the number of linearly
independent equations is equal to the number of terms. Obviously, we have to
clock at least T' times to achieve this goal. The question is whether we have
to clock more often. Until now, there is no satisfying answer to this question.
Our assumption is that approximately 7" clocks should be enough, meaning that
about 22397 key stream bits would be sufficient to mount the attack. Tests con-
firmed our assumption for simpler systems of equations. For the future, tests
with more Ej like systems of equations are planned.

If not enough linearly independent equations are available, improved versions
of linearization may succeed. We give a brief overview over existing methods.

In [7], Shamir and Kipnis presented the relinearization algorithm for solving
a system of quadratic equations over the finite field GF(2). They expect that
SNEs can be solved with this algorithm even if [is only one fifth of 7.

The XL algorithm (XL stands for eXtended Linearization), introduced at
Eurocrypt’00 [8] by Shamir, Patarin, Courtois and Klimov, can be seen as a
simplified and improved version of relinearization. Given a system of nonlinear
equations, additional equations (and possibly new terms also) may be gained by
multiplying all equations with all possible monoms of some degree < D. If we
are lucky we get enough new equations to achieve [= T'. It is an open question
under which conditions the XL algorithm is successful. The authors proved that
XL is as least as powerful as relinearization. Notice that the XL algorithm was
used by Courtois to attack the Toyocrypt cipher [2].

In [4], the XSL algorithm, an extension of XL which uses the sparsity of
SNEs, is introduced by Courtois and Pieprzyk. XSL stands for eXtended Sparse
Linearization. In the XSL algorithm, we multiply the equations by carefully se-
lected monomials. The idea is to use products of monomials that already appear

A Linearization Attack on the Bluetooth Key Stream Generator 5

in the SNE. In their paper, they discuss how the XSL algorithm may be useful
to mount attacks on AES and Serpent.

Each algorithm may be applicable to our SNE. Therefore, we expect that the
key stream generator can be broken with our attack at least in theory. Notice
that all described methods have been analyzed only heuristically. Hence, it is
neither sure that the Ejy system of equations can be solved nor how many key
stream bits are necessary. On the other side, there is no proof that the attack
fails. We hope that computer simulations will partly confirm our assumption.

The question if a similar SNE for the whole two level Ey encryption system
exists will be investigated in the future.

5 Conclusion

We discussed how the initial value of the key stream generator used in the Ejy
stream cipher can be obtained by solving a system of nonlinear equations of
degree 4. If enough linearly independent equations are provided, the system can
be solved by simple linearization. As the number of occurring terms is limited
by T ~ 22397, the secret key can be recovered in this case with 267-*® work using
Strassen’s algorithm.

It is an open question how many keystream bits are needed to get enough
linearly independent equations. We assume that it should not be much more than
T but at the moment, meaningful tests are missing. Using better algorithms than
linearization (e. g. XL, XSL) may reduce the number of needed key stream bits
significantly.

Obviously, the next step is to test whether a similar system of equations can
be found for the whole Ej cipher.

Acknowledgment

The author would like to thank Erik Zenner, Stefan Lucks and Matthias Krause
for helpful comments and discussions.

References

1. Bluetooth SIG, Specification of the Bluetooth system, Version 1.1, 1 February 22,
2001, available at http://www.bluetooth.com/.

2. Nicolas Courtois: Higher Order Correlation Attacks, XL Algorithm and Cryptanal-
ysis of Toyocrypt, http://eprintiacr.org/2002/87.ps. To appear in the Proceedings
of ICISC ’02, Springer LNCS 2587.

3. Nicolas Courtois: Fast Algebraic Attacks on Stream Ciphers with Linear Feedback,
Preprint, January 2003, available from the author.

4. Nicolas Courtois, Josef Pieprzyk: Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations, Proceedings of Asiacrypt ’02, Springer LNCS 2501, 2002, pp.
267-287.

6 Frederik Armknecht

5. Scott R. Fluhrer, Stefan Lucks: Analysis of the EO Encryption System, Proceedings
of Selected Areas of Cryptography '01, Springer LNCS 2259, 2001, pp. 38-48.

6. Matthias Krause: BDD-Based Cryptanalysis of Keystream Generators; Proceedings
of Eurocrypt 02, Springer LNCS 2332, 2002, pp. 222-237.

7. Adi Shamir, Aviad Kipnis: Cryptanalysis of the HFE Public Key Cryptosystem;
Proceedings of Crypto '99, Springer LNCS 1666, 1999, pp. 19-30.

8. Adi Shamir, Jacques Patarin, Nicolas Courtois, Alexander Klimov: Efficient Al-
gorithms for Solving Owverdefined Systems of Multivariate Polynomial Equations,
Proceedings of Eurocrypt ’00, Springer LNCS 1807, pp. 392-407.

9. Volker Strassen: Gausstan Elimination is Not Optimal; Numerische Mathematik,
vol 13, pp 354-356, 1969.

A The equations for Q:y; and P4,

In this section we prove the correctness of equations (5) resp. (6) for Q441 resp.
P,y ;. Let us recall equation (2) for Cyq1

Cet1 = (Qet1, Prta) (11)
=St41 ®C T (Ce-1) (12)
=81 0QidP 1,5, 8P dQi 16 P1) (13)

where

- (14)

Let fy resp. fi be the two boolean functions for which the following equations
hold

ar +b +cp +de +20Q: + B
St+1 = (8t1+178?+1) = {

Z-‘rl :fi(atabtactadtaQtapt) (15)

for i € {0,1}. It is easy to find fy and fi with the help of computers. If we write
down fp and f; in algebraic normal form, we get

fl = H4(t) S H3(t)Pt S5 Hz(t)Qt S Hl (t)PtQt (]_6)
fO :HZ(t)EBHl(t)PtEBQt (17)

See section 3 for the definition of ITj(t). In table 1 fy and f; are evaluated for all
possible inputs and compared with S;11. It is easy to see that fy and f; fulfill
the requirements. Together with (13) we get the following expressions for Q¢41
and Pt+1

Qe41 =51 ®Qrd Py (18)
= 14(t) ® 3(1) P ® 12(8)Qr ® 111 (1) PQy & Q ® P (19)
Py1=8, 8P ®Qi19 P (20)
=ILAO)SIH(HPLOQDQ 1O PPy (21)

A Linearization Attack on the Bluetooth Key Stream Generator

Table 1. fy and fi evaluated for all possible inputs and compared with Siy1

Lac[be[ce[de|Qc| P]| Sews [1] fo]

[ae[befce[di [Qe | P]| S [[fo]

8 Frederik Armknecht

B The number of terms

In this section we estimate the maximum number 7' of different terms in the
equations system. With each clock ¢ the following equation is produced

0=1D2—1 D2t D2ty1 D 242
DI (t) - (2e2t42 B 2e2641 D 282t—1 D 20—1 D 2p41 B 2442 D 1)
DI (t) - (1 Dz—1 D2zt D zpp1 D 2p42) © I5(t)ze © I4()
®IL(t—1) @ I (t — 1)1, () (1 @ 2¢) @ I (t — 1)I1»(t)
DI (t + Vzppr @ I (8 + DI () 2041 (1 @ 2¢) © T (E + 1) 2(t) 241
®IL(t+ 1) & I (t + 1)1, () (1 @ 2¢) @ I (t + 1)I15(t)
®IL (¢t +2) & I (t + 2) 11 () (1 @ 2¢) @ I (t + 2)I1>(t)

As we can see, every occurring term has to be one of the following types

a,b,c,d,ab, ac, ad, be, bd, cd, abe, acd, abd, bed, abed, aa’be, aa’ cd, aa’bd, bb' ac,
bb'cd, bb'ad, cc'ab, cc'ad, cc'bd, dd' ab, dd'ac, dd'be, aa'bb', aa'cc’, aa'dd’, bb' e, bb'dd’
ec'dd' aa'b,aa’c,aa’d, bb'a,bb'c,bb'd, cc'a, cc'b, cc'd, dd'a, dd'b, dd'c, aa’, bV, cc’, dd’

Here, a,a’ € {ai,...,an,} with a # @', etc. In table 2 the number of possible
terms for each type is presented depending on the values ni, ne, ng, and ng.
In addition, we give for each type one product in which it can occur. Note,
that some terms may occur in other products too!. Of course, these types have
to be counted only once. The sum is the number of possible terms 7. In Ej,
it is n1 = 25, ny = 31, n3 = 33 and ny = 39, so T' = 17,440,047, which is
approximately 223-07.

! For example, a term of type abc can occur in IT; (¢t)IT2(t') and in ITs(t)IT-(t")

A Linearization Attack on the Bluetooth Key Stream Generator

Table 2. All possible terms and their number depending on n; := n(%)

bb'cc’, bb'dd’ o (t) - sn2(nz — 1) [ns(ns — 1) + na(ng — 1))

type ‘ occur in ‘ number
a,b,c,d w1 (t) n1 +n2 +nz + n4
ab, ac, ad, be, bd, cd o (t) ni1(n2 + ng + na) + n2(nz + n4) + ngna
abe, acd, abd, bed 3 (t) ni(nang + nang + nzna) + nanzng
abed ma(t) n1M2M3"N4
aa’,bb',cc ,dd' mi(t) - mi(t') Ef L sni(ni — 1)
aa'b,aa’c,aa’d mi(t) - m2(t') tn1(n1 — 1)(n2 + ns + na)
bb'a,bb’c, bb'd mi(t) - m2(t') tna(nz — 1)(n1 + ns + na)
cca,cc'b,ec'd mi(t) - m2(t') ins(ns — 1)(n1 + na + na)
dd'a,dd'b,dd'c mi(t) - m2(t') 2na(na — 1)(n1 + na + ns)
aa'be,aa’cd, aa’bd | wa(t) - wa(t) 2n1(n1 — 1)(nans + na2na + nang)
bb'ac,bb’ cd,bb’ad | wa(t) - w2 (t) %ng (n2 — 1)(nins + ning + nzna)
ec'ab,cc’ad,cc’'bd | ma(t) - wa(t) %ng(ng —1)(nin2 + ning + nang)
dd'ab,dd'ac,dd'bc | w2 (t) - w2 (t) %n4(n4 —1)(nin2 + ning + nans)
aa'by’;aa’cc’ ;aa'dd' | wao(t) - ma(t) tni(ni — 1) (Ef 5 3mi(ni — 1))
(0) (0
(0) (0

cc'dd o (t) - ing(ng —Dna(ng — 1)

