
A Linearization Atta
k on the Bluetooth KeyStream GeneratorFrederik Armkne
ht ?University of Mannheim68131 Mannheim, Germanyarmkne
ht�th.informatik.uni-mannheim.deAbstra
t. In this paper we propose an atta
k on the key stream gen-erator underlying the en
ryption system E0 used in the Bluetooth spe
-i�
ation. We show that the initial value 
an be re
overed by solving asystem of nonlinear equations of degree 4 over the �nite �eld GF(2). Thissystem of equations 
an be transformed by linearization into a system oflinear equations with at most 223:07 unknowns. To our knowledge, thisis the best published atta
k on the key stream generator underlying theE0 yet.1 Introdu
tionThe en
ryption system E0, whi
h is the en
ryption system used in the Blue-tooth spe
i�
ation [1℄, is a two level system. In both levels the same key streamgenerator (KSG) is used. In this paper, we propose an atta
k on the underlyingKSG. We regard its initial value as the se
ret key and try to re
over it if onlyoutput bits are given. The result of the paper is that this 
an be done by solvinga system of nonlinear equations (SNE) of degree 4 over the �nite �eld GF(2).This system of equations 
an be transformed by linearization into a system oflinear equations (SLE) with at most 223:07 unknowns.The paper is stru
tured as follows. In Se
tion 2, the E0 key stream generatoris des
ribed. In Se
tion 3, we will show how to get for ea
h 
lo
k t a new equa-tion of degree 4 in the unknown initial value bits whi
h holds with probability1. Solving this SNE provides the initial value of the key stream generator. InSe
tion 4, we dis
uss how the system of nonlinear equations 
an be solved andwhi
h obsta
les have to be over
ome. The atta
k is 
ompared to other publishedatta
ks. Se
tion 5 
on
ludes the paper.2 Des
ription of the Bluetooth key stream generatorThe E0 en
ryption system is used in the Bluetooth spe
i�
ation [1℄ for wireless
ommuni
ation. The en
ryption is done in two levels. In the �rst level, a key? This work has been supported by grant 620307 of the DFG (German Resear
h Foun-dation)
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htand a non
e are given to a key stream generator whi
h produ
es the key for these
ond level. In the se
ond level, the same key stream generator uses the se
ondlevel key to generate the key stream bits whi
h are XORed to the plaintext bits.In this paper, we will 
on
entrate on the key stream generator (KSG).The KSG 
onsists of four regularly 
lo
ked Linear Feedba
k Shift Registers(LFSR) and four memory bits. With ea
h 
lo
k, an output bit zt is produ
eddepending on the outputs at; bt; 
t and dt of the four LFSRs and the four memorybits (Qt; Pt; Qt�1; Pt�1). Then, the next memory bits Ct+1 := (Qt+1; Pt+1) are
al
ulated and so on. The exa
t de�nitions arezt = at � bt � 
t � dt � Pt (1)Ct+1 = St+1 � Ct � T (Ct�1) (2)where T (x1; x0) := (x0; x0 � x1) andSt+1 = (S1t+1;S0t+1) = �at + bt + 
t + dt + 2Qt + Pt2 � (3)The values for C0 and C1 and the 
ontents of the LFSR must be set beforethe start, the other values will then be 
al
ulated. The LFSRs have the lengthsn1 = 25, n2 = 31, n3 = 33, and n4 = 39, and n = n1+n2+n3+n4 = 128 is thesize of the se
ret key.3 Building a system of nonlinear equations for the keystream generatorIn this se
tion, we will show that the initial state of the keystream generator 
anbe re
onstru
ted by solving a system of nonlinear equations of degree 4. Withea
h 
lo
k t, the new output zt is produ
ed and the next memory bits Qt+1 andPt+1 are 
omputed. This is done by the following equations (see Appendix A forthe proof): zt = at � bt � 
t � dt � Pt (4)Qt+1 = �4(t)��3(t)Pt ��2(t)Qt ��1(t)PtQt �Qt � Pt�1 (5)Pt+1 = �2(t)��1(t)Pt �Qt �Qt�1 � Pt�1 � Pt (6)Here, at; bt; 
t; dt are the outputs of the four LFSRs and �k(t) is the XOR overall possible produ
ts in fat; bt; 
t; dtg of degree k. E. g.,�1(t) = at � bt � 
t � dt�2(t) = atbt � at
t � atdt � bt
t � btdt � 
tdt...If we de�ne the following additional variablesA(t) = �4(t)��3(t)Pt � Pt�1B(t) = �2(t)��1(t)Pt � 1



A Linearization Atta
k on the Bluetooth Key Stream Generator 3equations (5) and (6) 
an be rewritten toQt+1 = A(t) �B(t)Qt (7)Pt+1 = B(t)� 1� Pt�1 � Pt �Qt �Qt�1 (8)By multiplying (7) with B(t) we get another equation0 = B(t)(A(t) �Qt �Qt+1) (9)Equation (8) is equivalent toQt �Qt�1 = B(t)� 1� Pt�1 � Pt � Pt+1 (10)Now we insert (10) into (9) with index t+ 1 instead of t and get0 = B(t) (A(t)�B(t+ 1)� 1� Pt � Pt+1 � Pt+2)Using (4) we eliminate all memory bits in the equation and get the followingequation whi
h holds for every 
lo
k t:0 = 1� zt�1 � zt � zt+1 � zt+2��1(t) � (ztzt+2 � ztzt+1 � ztzt�1 � zt�1 � zt+1 � zt+2 � 1)��2(t) � (1� zt�1 � zt � zt+1 � zt+2)��3(t)zt ��4(t)��1(t� 1)��1(t� 1)�1(t)(1� zt)��1(t� 1)�2(t)��1(t+ 1)zt+1 ��1(t+ 1)�1(t)zt+1(1� zt)��1(t+ 1)�2(t)zt+1��2(t+ 1)��2(t+ 1)�1(t)(1� zt)��2(t+ 1)�2(t)��1(t+ 2)��1(t+ 2)�1(t)(1� zt)��1(t+ 2)�2(t)With every 
lo
k t we get an additional equation whi
h holds with probability1. This makes it possible to 
ompile a system of nonlinear equations degree 4.As the unknowns are just the bits of the initial value of the four LFSRs, these
ret key 
an be re
overed by solving the SNE.Remark that in an LFSR all output bits are a linear 
ombination of the initialvalues bits so the number of possibly o

urring terms is limited, the upper boundbeing 17; 440; 047� 223:07 (see appendix B for details). In the following se
tion,we will dis
uss how this knowledge 
an be used to solve the SNE.4 Solving the system of nonlinear equationsWe will now 
on
entrate on the question how to solve the system of nonlinearequations of the previous se
tion.The simplest method is the so 
alled linearization algorithm. Assume thata system of nonlinear equations (SNE) with l linearly independent equationsis given. Let T be the number of all di�erent terms o

urring in the SNE. Ifwe repla
e every o

urring term by a new variable, we get a system of linearequations (SLE) with T unknowns. If l = T , then the SNE 
an be solved by
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htthe usual methods. Obviously, the algorithm 
an be only su

essful if enoughlinearly independent equations are present.The maximum number of possibly o

urring terms in the SNE isT = 8; 824; 350 � 223:07 (see appendix B for details). The fastest pra
ti
almethod we are aware of to solve a system of linear equations is Strassen's al-gorithm [9℄. It requires about 7 � T log27 operations. In this 
ase, the se
ret key
an be re
overed with approximately 267:58 operations if at least 223:07 linearlyindependent equations are available. Observe that the system of linear equations
an be 
onstru
ted in pre
omputation time. For ea
h atta
k, it is only ne
essaryto insert the a
tual values of the key stream bits zt.Note that the best known atta
k against the E0 was proposed by Krause[6℄ with time e�ort 277, given only 128 known key stream bits. The atta
k byFluhrer and Lu
ks [5℄ needs about 273 operations if 243 bits are available.Re
ently, Courtois [3℄ developed an improved version of algebrai
 atta
ks:fast algebrai
 atta
ks. They allow an even better atta
k on the E0 keystreamgenerator.Let us fa
e again the problem how to get enough linearly independent equa-tions. With ea
h 
lo
k t, we get a new equation in the bits of the se
ret key.Hen
e, one strategy is to produ
e new equations until the number of linearlyindependent equations is equal to the number of terms. Obviously, we have to
lo
k at least T times to a
hieve this goal. The question is whether we haveto 
lo
k more often. Until now, there is no satisfying answer to this question.Our assumption is that approximately T 
lo
ks should be enough, meaning thatabout 223:07 key stream bits would be suÆ
ient to mount the atta
k. Tests 
on-�rmed our assumption for simpler systems of equations. For the future, testswith more E0 like systems of equations are planned.If not enough linearly independent equations are available, improved versionsof linearization may su

eed. We give a brief overview over existing methods.In [7℄, Shamir and Kipnis presented the relinearization algorithm for solvinga system of quadrati
 equations over the �nite �eld GF(2). They expe
t thatSNEs 
an be solved with this algorithm even if l is only one �fth of T .The XL algorithm (XL stands for eXtended Linearization), introdu
ed atEuro
rypt'00 [8℄ by Shamir, Patarin, Courtois and Klimov, 
an be seen as asimpli�ed and improved version of relinearization. Given a system of nonlinearequations, additional equations (and possibly new terms also) may be gained bymultiplying all equations with all possible monoms of some degree � D. If weare lu
ky we get enough new equations to a
hieve l = T . It is an open questionunder whi
h 
onditions the XL algorithm is su

essful. The authors proved thatXL is as least as powerful as relinearization. Noti
e that the XL algorithm wasused by Courtois to atta
k the Toyo
rypt 
ipher [2℄.In [4℄, the XSL algorithm, an extension of XL whi
h uses the sparsity ofSNEs, is introdu
ed by Courtois and Pieprzyk. XSL stands for eXtended SparseLinearization. In the XSL algorithm, we multiply the equations by 
arefully se-le
ted monomials. The idea is to use produ
ts of monomials that already appear
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k on the Bluetooth Key Stream Generator 5in the SNE. In their paper, they dis
uss how the XSL algorithm may be usefulto mount atta
ks on AES and Serpent.Ea
h algorithm may be appli
able to our SNE. Therefore, we expe
t that thekey stream generator 
an be broken with our atta
k at least in theory. Noti
ethat all des
ribed methods have been analyzed only heuristi
ally. Hen
e, it isneither sure that the E0 system of equations 
an be solved nor how many keystream bits are ne
essary. On the other side, there is no proof that the atta
kfails. We hope that 
omputer simulations will partly 
on�rm our assumption.The question if a similar SNE for the whole two level E0 en
ryption systemexists will be investigated in the future.5 Con
lusionWe dis
ussed how the initial value of the key stream generator used in the E0stream 
ipher 
an be obtained by solving a system of nonlinear equations ofdegree 4. If enough linearly independent equations are provided, the system 
anbe solved by simple linearization. As the number of o

urring terms is limitedby T � 223:07, the se
ret key 
an be re
overed in this 
ase with 267:58 work usingStrassen's algorithm.It is an open question how many keystream bits are needed to get enoughlinearly independent equations. We assume that it should not be mu
h more thanT but at the moment, meaningful tests are missing. Using better algorithms thanlinearization (e. g. XL, XSL) may redu
e the number of needed key stream bitssigni�
antly.Obviously, the next step is to test whether a similar system of equations 
anbe found for the whole E0 
ipher.A
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he Mathematik,vol 13, pp 354-356, 1969.A The equations for Qt+1 and Pt+1In this se
tion we prove the 
orre
tness of equations (5) resp. (6) for Qt+1 resp.Pt+1. Let us re
all equation (2) for Ct+1Ct+1 = (Qt+1; Pt+1) (11)= St+1 � Ct � T (Ct�1) (12)= (S1t+1 �Qt � Pt�1;S0t+1 � Pt �Qt�1 � Pt�1) (13)where St+1 = (S1t+1;S0t+1) = �at + bt + 
t + dt + 2Qt + Pt2 � (14)Let f0 resp. f1 be the two boolean fun
tions for whi
h the following equationshold Sit+1 = fi(at; bt; 
t; dt; Qt; Pt) (15)for i 2 f0; 1g. It is easy to �nd f0 and f1 with the help of 
omputers. If we writedown f0 and f1 in algebrai
 normal form, we getf1 = �4(t)��3(t)Pt ��2(t)Qt ��1(t)PtQt (16)f0 = �2(t)��1(t)Pt �Qt (17)See se
tion 3 for the de�nition of �k(t). In table 1 f0 and f1 are evaluated for allpossible inputs and 
ompared with St+1. It is easy to see that f0 and f1 ful�llthe requirements. Together with (13) we get the following expressions for Qt+1and Pt+1Qt+1 = S1t+1 �Qt � Pt�1 (18)= �4(t)��3(t)Pt ��2(t)Qt ��1(t)PtQt �Qt � Pt�1 (19)Pt+1 = S0t+1 � Pt �Qt�1 � Pt�1 (20)= �2(t)��1(t)Pt �Qt �Qt�1 � Pt � Pt�1 (21)
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Table 1. f0 and f1 evaluated for all possible inputs and 
ompared with St+1at bt 
t dt Qt Pt St+1 f1 f0 at bt 
t dt Qt Pt St+1 f1 f00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 10 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 10 0 0 0 1 1 1 0 1 1 0 0 0 1 1 2 1 00 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 10 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 10 0 0 1 1 0 1 0 1 1 0 0 1 1 0 2 1 00 0 0 1 1 1 2 1 0 1 0 0 1 1 1 2 1 00 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 10 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 10 0 1 0 1 0 1 0 1 1 0 1 0 1 0 2 1 00 0 1 0 1 1 2 1 0 1 0 1 0 1 1 2 1 00 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 10 0 1 1 0 1 1 0 1 1 0 1 1 0 1 2 1 00 0 1 1 1 0 2 1 0 1 0 1 1 1 0 2 1 00 0 1 1 1 1 2 1 0 1 0 1 1 1 1 3 1 10 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 10 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 10 1 0 0 1 0 1 0 1 1 1 0 0 1 0 2 1 00 1 0 0 1 1 2 1 0 1 1 0 0 1 1 2 1 00 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 10 1 0 1 0 1 1 0 1 1 1 0 1 0 1 2 1 00 1 0 1 1 0 2 1 0 1 1 0 1 1 0 2 1 00 1 0 1 1 1 2 1 0 1 1 0 1 1 1 3 1 10 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 10 1 1 0 0 1 1 0 1 1 1 1 0 0 1 2 1 00 1 1 0 1 0 2 1 0 1 1 1 0 1 0 2 1 00 1 1 0 1 1 2 1 0 1 1 1 0 1 1 3 1 10 1 1 1 0 0 1 0 1 1 1 1 1 0 0 2 1 00 1 1 1 0 1 2 1 0 1 1 1 1 0 1 2 1 00 1 1 1 1 0 2 1 0 1 1 1 1 1 0 3 1 10 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1
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htB The number of termsIn this se
tion we estimate the maximum number T of di�erent terms in theequations system. With ea
h 
lo
k t the following equation is produ
ed0 = 1� zt�1 � zt � zt+1 � zt+2��1(t) � (ztzt+2 � ztzt+1 � ztzt�1 � zt�1 � zt+1 � zt+2 � 1)��2(t) � (1� zt�1 � zt � zt+1 � zt+2)��3(t)zt ��4(t)��1(t� 1)��1(t� 1)�1(t)(1� zt)��1(t� 1)�2(t)��1(t+ 1)zt+1 ��1(t+ 1)�1(t)zt+1(1� zt)��1(t+ 1)�2(t)zt+1��2(t+ 1)��2(t+ 1)�1(t)(1� zt)��2(t+ 1)�2(t)��1(t+ 2)��1(t+ 2)�1(t)(1� zt)��1(t+ 2)�2(t)As we 
an see, every o

urring term has to be one of the following typesa; b; 
; d; ab; a
; ad; b
; bd; 
d; ab
; a
d; abd; b
d; ab
d; aa0b
; aa0
d; aa0bd; bb0a
;bb0
d; bb0ad; 

0ab; 

0ad; 

0bd; dd0ab; dd0a
; dd0b
; aa0bb0; aa0

0; aa0dd0; bb0

0; bb0dd0;

0dd0; aa0b; aa0
; aa0d; bb0a; bb0
; bb0d; 

0a; 

0b; 

0d; dd0a; dd0b; dd0
; aa0; bb0; 

0; dd0Here, a; a0 2 fa1; : : : ; an1g with a 6= a0, et
. In table 2 the number of possibleterms for ea
h type is presented depending on the values n1, n2, n3, and n4.In addition, we give for ea
h type one produ
t in whi
h it 
an o

ur. Note,that some terms may o

ur in other produ
ts too1. Of 
ourse, these types haveto be 
ounted only on
e. The sum is the number of possible terms T . In E0,it is n1 = 25, n2 = 31, n3 = 33 and n4 = 39, so T = 17; 440; 047, whi
h isapproximately 223:07.

1 For example, a term of type ab
 
an o

ur in �1(t)�2(t0) and in �2(t)�2(t0)
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Table 2. All possible terms and their number depending on ni := n(i)type o

ur in numbera,b; 
; d �1(t) n1 + n2 + n3 + n4ab; a
; ad; b
; bd; 
d �2(t) n1(n2 + n3 + n4) + n2(n3 + n4) + n3n4ab
; a
d; abd; b
d �3(t) n1(n2n3 + n2n4 + n3n4) + n2n3n4ab
d �4(t) n1n2n3n4aa0; bb0; 

0; dd0 �1(t) � �1(t0) P4i=1 12ni(ni � 1)aa0b; aa0
; aa0d �1(t) � �2(t0) 12n1(n1 � 1)(n2 + n3 + n4)bb0a; bb0
; bb0d �1(t) � �2(t0) 12n2(n2 � 1)(n1 + n3 + n4)

0a; 

0b; 

0d �1(t) � �2(t0) 12n3(n3 � 1)(n1 + n2 + n4)dd0a; dd0b; dd0
 �1(t) � �2(t0) 12n4(n4 � 1)(n1 + n2 + n3)aa0b
; aa0
d; aa0bd �2(t) � �2(t0) 12n1(n1 � 1)(n2n3 + n2n4 + n3n4)bb0a
; bb0
d; bb0ad �2(t) � �2(t0) 12n2(n2 � 1)(n1n3 + n1n4 + n3n4)

0ab; 

0ad; 

0bd �2(t) � �2(t0) 12n3(n3 � 1)(n1n2 + n1n4 + n2n4)dd0ab; dd0a
; dd0b
 �2(t) � �2(t0) 12n4(n4 � 1)(n1n2 + n1n3 + n2n3)aa0bb0; aa0

0; aa0dd0 �2(t) � �2(t0) 12n1(n1 � 1) �P4i=2 12ni(ni � 1)�bb0

0; bb0dd0 �2(t) � �2(t0) 14n2(n2 � 1) [n3(n3 � 1) + n4(n4 � 1)℄

0dd0 �2(t) � �2(t0) 14n3(n3 � 1)n4(n4 � 1)


