
Analysis of the E0 En
ryption SystemS
ott R. Fluhrer1 and Stefan Lu
ks21 Cis
o Systems, In
.170 West Tasman Drive, San Jose, CA 95134sfluhrer�
is
o.
om2 University of Mannheim68131 Mannheim, Germanylu
ks�th.informatik.uni-mannheim.deAbstra
t. The en
ryption system E0, whi
h is the en
ryption systemused in the Bluetooth spe
i�
ation, is examined. In the 
urrent paper,a method of deriving the 
ipher key from a set of known keystream bitsis given. The running time for this method depends on the amount ofknown keystream available, varying from O(284) if 132 bits are availableto O(273), given 243 bits of known keystream.Although the atta
ks are of no advantage if E0 is used with the re
-ommended se
urity parameters (64 bit en
ryption key), they provide anupper bound on the amount of se
urity that would be made available byenlarging the en
ryption key, as dis
ussed in the Bluetooth spe
i�
ation.1 Introdu
tionWe give algorithms for deriving the initial state of the keystream generatorused within E0 given some bits of keystream with less e�ort than exhaustivesear
h. From this, we derive a method for re
onstru
ting the session en
ryptionkey used by E0 based on some amount of keystream output. E0 uses a two levelrekeying me
hanism, using the key to initialialize the level 1 keystream generatorto produ
e the initial state for the level 2 keystream generator, whi
h produ
esthe a
tual keystream used to en
rypt the data.We use a known keystream to re
onstru
t the initial state for the level 2keystream generator, whi
h we then use to re
onstru
t the initial state for thelevel 1 keystream generator, from whi
h we 
an dire
tly dedu
e the en
ryptionkey. Re
onstru
ting the state of the level 2 keystream generator takes an ex-pe
ted O(276) to O(284) work e�ort (based on the amount of known keystreamavailable). Another atta
k with even more keystream available takes O(272)work.By re
onstru
ting the state from either 1 or 2 pa
kets that are en
ryptedduring the same session, we 
an re
onstru
t the state of the level 1 keystreamgenerator in an expe
ted O(281) or O(251) time, whi
h gives a total of O(273)to O(284) work e�ort.This paper is stru
tured as follows. In Se
tion 2, the E0 keystream genera-tor, and how it is used within the Bluetooth system is des
ribed. In Se
tion 3,



previous analysis and results are summarized. Se
tion 4 presents our base atta
kagainst the keystream generator, Se
tion 5 des
ribes how to use it against thelevel 2 generator. Se
tion 6 deals with another approa
h to atta
k the keystreamgenerator and the se
ond level, if a huge amount of known keystream is available.Se
tion 7 des
ribes the basi
 atta
k on the �rst level of E0 , given one state ofthe level 2 generator, while Se
tion 2 deals with an atta
k given two su
h states.Se
tion 9 
omments on atta
king the full E0 system. Se
tion 10 
on
ludes anddis
usses the rami�
ations on the Bluetooth system.2 Des
ription of E0E0 is an en
ryption proto
ol that was designed to provide priva
y within theBluetooth wireless LAN spe
i�
ation. When two Bluetooth devi
es need to 
om-muni
ate se
urely, they �rst undergo a key ex
hange proto
ol that 
ompleteswith ea
h unit agreeing on a shared se
ret, whi
h is used to generate the en-
ryption key (KC). To en
rypt a pa
ket, this private key (KC) is 
ombined witha publi
ly known salt value (EN RAND) to form an intermediate key (K 0C)1.Then, K 0C is used in a linear manner, along with the publi
ly known values, theBluetooth address, and a 
lo
k whi
h is distin
t for ea
h pa
ket, to form theinitial state for a two level keystream generator.The keystream generator 
onsists of 4 LFSRs with a total length of 128 bits,and a 4 bit �nite state ma
hine, refered to as the blender FSM. For ea
h bitof output, ea
h LFSR is 
lo
ked on
e, and their output bits are ex
lusive-or'edtogether with one bit of output from the �nite state ma
hine. Then, the 4 LFSRoutputs are summed together. The two most signi�
ant bits of this 3-bit sumare used to update the state of the �nite state ma
hine. We will refer to the 25bit LFSR as LFSR1, the 31 bit LFSR as LFSR2, the 33 bit LFSR as LFSR3 andthe 39 bit LFSR as LFSR4. We will also refer to the �nite state ma
hine as theblender FSM. The generator is shown in Figure 1. Note that the least signi�
antbit (LSB) of the sum of the four LFSRs is their bit-wise XOR.
����

HHj-��*��� ?? ��R-����?����? -AddLFSR3 Blender (XOR)MSB LSBLFSR4LFSR2LFSR1
Fig. 1. The E0 keystream generator.1 The atta
ks in the 
urrent paper a
tually provide the value of K0C .



There are logi
ally two su
h keystream generators. The key of the �rst levelkeystream generator is shifted into the LFSRs, while 
learing the blender FSM.Then, 200 bits are generated and dis
arded. Then, the output of this keystreamgenerator is 
olle
ted, and is used to initialize the LSFRs of what we 
all these
ond level keystream generator, whi
h is stru
turally identi
al to the �rst levelkeystream generator. This initialization is done by 
olle
ting 128 output bits,parallel loading them into the LSFRs, and making the initial se
ond level FSMstate be the �nal �rst level FSM state.This output of this se
ond generator is then used as an additive stream 
ipherto en
rypt the pa
ket.3 Des
ription of Previous WorkIn a s
i.
rypt.resear
h posting [6℄, Markku-Juhani O. Saarinen showed an atta
kthat rederived the session key. This atta
k 
onsisted of guessing the states of the3 smaller LFSRs and the blender FSM, and using those states and the observedkeystream to 
ompute whether there is a 
onsistent output from LFSR4 that is
onsistent with that assumption.In the original posting, he estimated the atta
k to have overall 
omplexityof O(2100). However, he assumed that only 125 bits of keystream were available,and so he assumed a signi�
ant amount of time would be spent 
he
king falsehits. Sin
e signi�
antly more keystream is available within a pa
ket, the true
omplexity is 
loser to O(293) expe
ted.Our atta
ks 
an be viewed as re�nements of Saarinen's atta
k by takingthe same basi
 approa
h of guessing the initial states of part of the 
ipher,and 
he
king for 
onsisten
y. However, our atta
ks take advantage of additionalrelationships within E0 and use them to gain some performan
e.Ekdahl and Johansson have shown in [2℄ how to extra
t the initial statefrom the keystream generator used in E0 given O(261) time and O(250) knownkeystream. Their atta
k works by exploiting some weak linear 
orrelations be-tween the outputs of the LFSRs and the keystream output to verify if a guess onone of the LFSRs is a

urate. Previous to that, Hermelin and Nyberg publishedin [4℄ an atta
k whi
h re
overed the initial state with O(264) work and O(264)known keystream. However, these are theoreti
al atta
ks as they require a farlarger amount of 
onse
utive keystream output than is available.A time-spa
es tradeo� atta
k has been des
ribed by Jakobsson and Wetzel[5℄. Given N key streams and running time T , it is possible to re
over one ofthe N keys if N �T > 2132. A similar atta
k on the A5 keystream generator hasbeen previously des
ribed by Goli
 [3℄.Our atta
ks resemble a general type of atta
k, the linear 
onsisten
y atta
k,whi
h has been des
ribed as early as 1989 by Zeng, Yang, and Rao [7℄.



4 Base Atta
k on the E0 Keystream GeneratorThe base atta
k rederives the initial settings of the LFSRs, given a limited(132 or so bits) keystream output. We will later show how this atta
k 
an beseparately optimized for both levels of the keystream generators. For this atta
k,you assume the initial settings of the blender FSM and the 
ontents of LFSR1and LFSR2, and maintain for ea
h state the 
urrent settings of the blenderFSM, and a set L of linear equations on the LFSR3 and LFSR4 output bits.We will refer to those output bits as LFSR3n and LFSR4n.First, you initialize the set L to empty. Then, you perform the below depth-�rst sear
h:1. Call the state we are examining n. Compute the ex
lusive-or of the outputn of LFSR1 and LFSR2, the next output of the blender FSM (based onthe 
urrent state), and the known keystream bit Zn. If our assumptions are
orre
t to this point, this must be equal to the ex
lusive-or of the outputsof LFSR3 and LFSR4.2. If the ex
lusive-or is zero, then we bran
h and 
onsider the 
ases that bothLFSR3 and LFSR4 output a zero here, and that they both output a one.When we assume a zero, we in
lude in L the two linear equations LFSR3n =0 and LFSR4n = 0, and when we assume a one, we in
lude in L the twolinear equations LFSR3n = 1 and LFSR4n = 1.3. If the ex
lusive-or is one, then we in
lude in L the single linear equationLFSR3n 6= LFSR4n4. If n � 33, then we in
lude in L the linear equation implied by the LFSR3tap equations. If n � 39, then we in
lude in L the linear equation impliedby the LFSR4 tap equations. In both 
ases, we 
he
k to see if the newequations are in
onsistent with the equations already in L. If they are, thensome assumption we made is in
orre
t and we ba
ktra
k to 
onsider the next
ase.5. Compute the next state of the blender FSM. This is always possible, as thenext state depends on the 
urrent state (whi
h we know) and the number ofLFSRs that output a one, whi
h we know.6. If n is more than 132, then we have found with high probability the initialstate of the en
ryption engine. If not, then we 
ontinue this sear
h for staten+ 1There are two ideas behind this algorithm. The �rst is that the next statefun
tion for the blender FSM depends only on the number of LSFRs that outputa one. So, when we assume that the outputs of LFSR3 and LFSR4 di�er, weneed not de
ide whi
h one outputs a zero and whi
h one outputs a one { instead,we 
an just note the fa
t that they di�er and 
ontinue the sear
h.The other idea is that systems of linear equations in GF (2) 
an be quiteeÆ
iently examined for 
ontradi
tions.How eÆ
ient is this atta
k? We provide some heuristi
 arguments. First,
onsider the 
ase that all the assumed bits of LFSRs 1 and 2 and the blenderstate are 
orre
t.



With every step we learn if the sum S of the two output bits is either (a)S 2 f0; 2g or (b) S = 1. Both 
ases (a) and (b) are equally likely.Note Prob[S = 1℄ = 0:5, and Prob[S = 0℄ = Prob[S = 2℄ = 0:25. If S = 1,we learn one linear equation on the state bits of LFSRs 3 and 4 (namely theXOR of the two 
urrent output bits). If S 2 f0; 2g, we bran
h and 
onsider bothS = 0 and S = 2. Both S = 0 and S = 2 provide us with two linear equationson the state bits of LFSRs 3 and 4.On the average, we expe
t to learn 1.5 linear equations and bran
h 0.5 timesfor ea
h step. On
e we have learned in total 33+39=72 equations, we are in a leafof the bran
h tree and know or "have guessed" all bits in the system. The numberof su
h leaves des
ribes the amount of work. (Note that this analysis is based onthe heuristi
 assumption that no equations are redundant or 
ontradi
tory, orrather, that the e�e
ts of redundant and 
ontradi
tory equations on the amountof work 
an
el out.)So, our bran
h tree has an \average" size determined by 272=3 = 224 leaves.We initially assumed 60bits and 
an expe
t to have made a 
orre
t assumptionafter trying 259 times, whi
h gives us a running time of O(259+24) = O(283) onthe average.Experiments demonstrate that our heuristi
 arguments on the eÆ
ien
y ofthe atta
k are reasonable, though perhaps a bit optimisti
. For a random in
or-re
t guess of initial state, the pro
edure examines an average of approximately 60million (226) states before terminating. Thus we 
an re
onstru
t the en
ryptionengine state in O(285) expe
ted time.However, for both the �rst level and the se
ond level keystream generator, we
an take advantage of spe
ial 
onditions that allow us to further optimize theatta
k.5 Atta
k on the Se
ond Level E0 Keystream GeneratorTo optimize the atta
k against the se
ond level keystream generator (whi
hprodu
es the observed keystream dire
tly), we note that the base atta
k is moreeÆ
ient if the outputs of LFSR3 and LFSR4 ex
lusive-or'ed together happensto have a high hamming weight. To take advantage of this, we extend the atta
kby assuming that, at a spe
i�
 point in the keystream, the next n + 1 bits ofLFSR3 ex
lusive-or'ed with LFSR4 are n ones followed by a zero, where n willbe less than the length of the LFSRs. Sin
e LFSR outputs are e�e
tively randomand independent with su
h a length (sin
e both LFSRs 
an generate any n+ 1bit pattern at any time with approximately equal probability if n < 32), theprobability a n + k length output 
ontains su
h a sequen
e is approximatelyk � 2�n (for k � 2n).If the assumption that the LFSRs produ
e su
h an output at the spe
i�
 pointin the keystream is false, we will fail to dis
over the internal state. However, theamount of work required to make that determination turns out to be rather lessthan O(285�n), and so if we have 2n or more starting pla
es to test out, we



will �nd a pla
e where the above pro
edure dis
overs the initial state with highprobability.The expe
ted amount of time the base atta
k will take when we pre
onditionthe assumed outputs of LFSR3 and LFSR4 
an be experimentally obtained. Theresults are given in Table 5, together with the expe
ted time for the full sear
h.Looking through this table, we 
an see that modest amounts of keystream redu
ethe expe
ted work somewhat, however, vast quantities of keystream redu
e theexpe
ted work only slightly further.Table 1. The expe
ted 
omplexity and plaintext required for various values of n. BaseSear
h Time is the expe
ted number of nodes traversed in a single run of the baseatta
k. Expe
ted Plaintext Required is the expe
ted amount of plaintext we need toprose
ute the atta
k. Expe
ted Sear
h Time is the expe
ted total sear
h time taken.n Base Sear
h Time Expe
ted Plaintext Required Expe
ted Sear
h Time5 224:8 165 bytes 283:810 223:5 1157 bytes 282:515 222:1 33k 281:120 220:5 1M 279:525 218:8 32M 277:830 217:1 1G 276:1Formally, the algorithm is:1. Sele
t a position in the known keystream that is the start of more than 132
onse
utive known bits.2. Cy
le through all possible 
ombinations of 4 bits of blender FSM state, 25bits of LFSR1 state and the last 30� n bits of LFSR2 state3. Compute the initial n + 1 bits of LFSR2 state that is 
onsistent with theex
lusive-or of LFSR3 and LFSR4 
onsisting of n ones and then zero.4. Run the base atta
k on that setting. Stop if it �nds a 
onsistant initialsetting.The above algorithm runs the base atta
k 259�n times and has a 2�n prob-ability of su

ess for a single lo
ation.Note that, even though a single pa
ket has a payload with a maximum of2745 bits, we 
an have 
onsiderably more than 2745 bits of known keystream,if we know the plaintext of multiple pa
kets. All the next phase of the atta
kneeds to know is the initial state of the se
ond level keystream generator for apa
ket { it does not matter whi
h. If we have multiple pa
kets, we 
an try all ofthem, and we will be su

essful if we manage to �nd the initial state for any ofthem.



6 Another Atta
k on the Se
ond Level GeneratorGiven a huge amount of known keystream, there is another te
hnique to atta
kthe se
ond level keystream generator more eÆ
iently. The basi
 atta
k requiresto assume the blender state and the states of both LFSR1 and LFSR2 (i.e.4 + 25 + 31 bits = 60bits). Now, we start with assuming only the blender andLFSR1 states (29 bits), at the beginning of the atta
k. During the 
ourse of theatta
k, we 
ontinue to make assumptions on how the blender state is updated.Denote the sum of the outputs of LFSR2, LFSR3, and LFSR4 by S. Obvi-ously, S 2 f0; 1; 2; 3g. Sin
e we always know (based on previous assumptions) the
urrent blender and LFSR1 state, we only need to know S in order to 
omputethe next blender state. The 
urrent output bit tells if S is odd or not. Thus, weknow if either (a) S in f0; 2g or (b) S in f1; 3g.Both 
ases (a) and (b) are equally likely. And in both 
ases we learn onelinear equation, namely we learn the XOR of the output bits of the LFSRs 2{4.Now 
onsider the 
onditional probabilities Prob[S = 2j(a)℄ and Prob[S = 1j(b)℄.Assuming the three output bits are independent uniformly distributed randombits (whi
h they are, approximately), we getProb[S = 2j(a)℄ = Prob[S = 1j(b)℄ = 0:75:Instead of bran
hing, as we did in the base atta
k, we simply assume the likely
ase S 2 f1; 2g, ignoring S = 0 and S = 3.We need 31+ 33+ 39 = 103 linear equations to entirely restore the states ofthe LFSRs 2{4. The assumptions we get here are linearily independent. If bothour initial assumptions on the 29 state bits of blender and LFSR1 and our 103assumptions on the sum S are 
orre
t, we have found restored the 
orre
t state.We 
an 
he
k so by 
omputing Æ output bits (with Æ > 29) and 
omparing theoutput stream we get by our assumed E0 state with the true output stream.Within these 103 
lo
ks the random variable S takes 103 values S1; S2; : : : 2f0; 1; 2; 4g with Prob[Si 2 f1; 2g = 0:75℄. The atta
k works if S1 2 f1; 2g andS2 2 f1; 2g and . . . and S103 2 f1; 2g. Making the heuristi
 (but apparentlyplausible) argument that the Si behave like 103 independent random variables,the probability p = Prob[S1 2 f1; 2g and : : : andS103 2 f1; 2g ℄ isp = 0:75103 � 1:35 � 10�13 � 2�42:7:If the initially assumed 29 bits are 
orre
t, the atta
k requires less than 243 bitsof known keystream and less than 243 steps (ea
h step means to solve a systemof 103 linear equations). Thus the entire atta
k needsless than 243 bits of known keystreamand less than 272 steps.



7 Atta
k on the First Level E0 Keystream GeneratorTo atta
k the �rst level keystream generator (whi
h produ
es the initial LFSRand blender FSM states), we �rst note that the key setup sets the FSM state ofthe se
ond level keystream generator to be the �nal 
ontents of the FSM stateafter the �rst level generator has produ
ed the last bit for the LFSR state. Wealso note that the next-state fun
tion of the 
ipher is invertible { the LFSRs
an be run ba
kwards as easily as forwards, and the FSM next state fun
tion isinvertible given a 
urrent LFSR state. We 
an also test the base atta
k, and �ndthat it works essentially as well on the ba
kwards 
ipher as it does the forward
ipher.This suggests this atta
k: when given one state of the level 2 generator, 
y
lethrough all possible 
ombinations of 25 bits of LFSR1 state and 31 bits of LFSR2state, and use the base atta
k on the reversed 
ipher, using as the initial FSM
ontents the initial 
ontents of the phase 2 FSM. Be
ause we are 
y
ling throughan expe
ted O(255) LFSR states, and ea
h 
he
k is expe
ted to take O(226) time,we should expe
t to �nd the �rst level initial position in O(281) time.8 Atta
k on the First Level E0 Keystream GeneratorGiven Two Se
ond Level KeystreamsNow, let us 
onsider a possible atta
k if the atta
ker has the �rst level outputfor two distin
t pa
kets that were sent with the same key. In this 
ase, we �rstnote that both keystreams have a 
lo
k asso
iated with it, and that the 
lo
k isthe only thing that di�ers. We further note that the method of 
ombination islinear, hen
e if we know the xor di�erential in the 
lo
k (whi
h we do, be
ausewe know the a
tual 
lo
k values), we know the xor di�erential of the �rst levelLFSRs.We 
an use this to optimize the atta
k further, as follows, where we willindi
ate the two known sides with as xA and xB , and where L is a set of linearequations on the outputs of LFSR2A, LFSR3A, LFSR4A.Assume the 
ontents of LFSR1A (whi
h also gives you LFSR1B, be
ause ofthe known di�erential between the two).Initialize the set L to empty.Perform the following depth-�rst sear
h1. Call the state we are examining n. Compute the output nA, nB ofLFSR1A, LFSR1B, the previous output of the blender FSMs basedon the 
urrent state), and the known keystream bit ZnA, ZnB. If our as-sumptions are 
orre
t to this point, this must be equal to the ex
lusive-or of the outputs of LFSR2A, LFSR3A, LFSR4A and of LFSR2B,LFSR3B, LFSR4B.2. Che
k the known di�erential in LFSR2A, LFSR3A, LFSR4A, LFSR2B,LFSR3B, LFSR4B to see if there is a setting of those bits that satisi�esboth the known xors and the known di�erentials. If there is not, thenba
ktra
k to 
onsider the next 
ase.



3. If we rea
h here, there are four possible settings of the outputs of LFSR2A,LFSR3A, LFSR4A whi
h are 
onsistent with known xors and di�eren-tials. At least two of those settings will also update both blender FSMsidenti
ally, and will di�er in pre
isely two bits. Here, we bran
h and
onsider three 
ases: one 
ase that 
orresponds to the two settings whi
hupdates both blender FSMs identi
ally, and the other two 
ases 
orre-sponding to the other two settings. For the �rst 
ase, we in
lude in Lthe linear equation implied by the two bits that di�er, and the linearequation implied by the third bit setting. For the other two 
ases, wein
lude in L three linear equations giving the three bit settings.4. If n � 31, then we in
lude in L the linear equation implied by theLFSR2A tap equations.5. If n � 33, then we in
lude in L the linear equation implied by theLFSR3A tap equations. If n � 39, then we in
lude in L the linearequation implied by the LFSR4A tap equations. In all three 
ases, we
he
k to see if the new equations are in
onsistent with the equationsalready in L. If they are, then some assumption we made is in
orre
tand we ba
ktra
k to 
onsider the next 
ase.6. Compute the previous state of the blender FSMs. This is always possible,as the next state depends on the 
urrent state (whi
h we know) and thenumber of LFSRs that output a one, whi
h we know.7. If n is more than 128, then we have found with high probability the initialstates of the en
ryption engines. If not, then we 
ontinue this sear
h forstate n+ 1Experiments show that the above pro
edure examines an expe
ted O(251) nodesduring the sear
h.9 Atta
k Against Full E0Below is how we 
an 
ombine these atta
ks into an atta
k on the full E0 en
ryp-tion system.Assume we have an amount of known keystream generated with an unknownsession key, whi
h may be from a single pa
ket or it may be from multiplepa
kets. We sele
t n based on the amount of known keystream. We 
an thenuse the atta
k shown in Se
tion 5 to �nd the initial LFSR and blender FSMsettings for a pa
ket generated by that session key. If the 
ost of �nding theinitial LFSR and blender FSM settings for a se
ond pa
ket is less than O(281),then we �nd a se
ond one. Then, we either use the atta
k shown in Se
tion 7 to�nd all possible initial LFSR settings that generated that initial setting (if wehave one initial LFSR setting), or we use the atta
k shown in Se
tion 8 if we havetwo initial LFSR settings. On
e we �nd the initial LFSR settings that generatesthe observed output, we 
an step the LFSRs ba
k 200 
y
les, and use lineartransformations to eliminate the Bluetooth address and the blo
k to re
onstru
tthe session key K 0C , and verify that potential key by using to to de
rypt otherpa
kets.



If we denote the amount of e�ort to �nd a LFSR and blender setting givenn bytes of known keystream as F (n) (see table 5), then the total e�ort for thisatta
k is O(min(F (n) + 281; 2F (n=2) + 251)) work:This is O(284) if you have barely enough keystream to uniquely identify thesession key (eg., 140 bits), and drops to O(277) if you have a gigabit of knownkeystream.We 
an further redu
e the e�ort down toO(273) work;if about 14000 gigabit bits of keystream are available. We simply use the atta
kfrom Se
tion 6 twi
e, to re
over two states of the level 2 generator, and then
ontinue with the atta
k from Se
tion 8.These results are summarized in Figure 2.
86

82

78

74

72

80

84

70

76

L
og

2 
E

xp
ec

te
d 

W
or

k 
E

ff
or

t

30 40 5020100

Log2 Available KeystreamFig. 2. Expe
ted work e�ort required to re
over session key, versus known keystream.



10 Con
lusions and Open ProblemsWe des
ribed methods for rederiving the session key for E0 given a limitedamount of known keystream. This session key will allow the atta
ker to de
ryptall messages in that session. We showed that the real se
urity level of E0 isno more than 73{84 bits (depending the amount of keystream available to theatta
ker), and that larger key lengths suggested by the Bluetooth spe
i�
ation2would not provide additional se
urity.We empi
i
ally observed that the te
hnique from Se
tion 6 (assume theblender state and LFSR1 only, and build up a set of equations based on thestates of LFSR2, LFSR3 and LFSR4) posed some pra
ti
al problems, be
ausethe equations 
reated are rather 
omplex. Also, the te
hnique requires a hugeamount of known keystream. It would be interesting to develop improved te
h-niques to handle the set of linear equations more eÆ
iently. Also, it would beinteresting to redu
e the required amount of known keystream.Another approa
h for more pra
ti
al atta
ks on E0 and Bluetooth would beto exploit the weak mixing of the 
lo
k into the �rst level LFSRs, whi
h will, atatta
ker known times, leave three of the LFSRs with zero di�erential.Referen
es1. Bluetooth SIG, "Bluetooth Spe
i�
ation", Version 1.0 B,http://www.bluetooth.
om/2. P. Ekdahl, T. Johansson, "Some Results on Correlations in the Bluetooth StreamCipher", Pro
eedings of the 10th Joint Conferen
e on Communi
ations and Coding,Obertauern, Austria, Mar
h 11-18, 2000.3. J. Goli
, Euro
rypt 1997.4. M. Hermelin, K. Nyberg, "Correlation Properties of the Bluetooth Combiner", pro-
eedings of ICISC '99, LNCS 1787, Springer, 1999.5. M. Jakobsson, S. Wetzel, "Se
urity Weaknesses in Bluetooth", RSA Conferen
e2001.6. M. Saarinen, "Re: Bluetooth und E0", Posting to s
i.
rypt.resear
h, 02/09/00.7. K. Zeng, C.-H. Yang, T. Rao "On the Linear Consisten
y Test (LCT) in Cryptanal-ysis with Appli
ations", Crypto '89, Springer LNCS 435, pp. 164{174.
2 \For the en
ryption algorithm, the key size may vary between 1 and 16 o
tets (8-128bits). The size of the en
ryption key shall be 
on�gurable for two reasons. [First isexport provisions℄. The se
ond reason is to fa
ilitate a future upgrade path for these
urity without a 
ostly redesign of the algorithms and the en
ryption hardware;in
reasing the e�e
tive key size is the simplest way to 
ombat in
reased 
omputingpower at the opponent side. Currently (1999) it seems that an en
ryption key size of64 bits gives satisfying prote
tion for most appli
ations." [1, Se
tion 14, page 148℄


