Analysis of the Ey Encryption System

Scott R. Fluhrer! and Stefan Lucks?

! Cisco Systems, Inc.
170 West Tasman Drive, San Jose, CA 95134
sfluhrer@cisco.com
2 University of Mannheim
68131 Mannheim, Germany
lucks@th.informatik.uni-mannheim.de

Abstract. The encryption system Fg, which is the encryption system
used in the Bluetooth specification, is examined. In the current paper,
a method of deriving the cipher key from a set of known keystream bits
is given. The running time for this method depends on the amount of
known keystream available, varying from O(2%*) if 132 bits are available
to O(27), given 2*® bits of known keystream.

Although the attacks are of no advantage if Fy is used with the rec-
ommended security parameters (64 bit encryption key), they provide an
upper bound on the amount of security that would be made available by
enlarging the encryption key, as discussed in the Bluetooth specification.

1 Introduction

We give algorithms for deriving the initial state of the keystream generator
used within Ey given some bits of keystream with less effort than exhaustive
search. From this, we derive a method for reconstructing the session encryption
key used by Ej based on some amount of keystream output. Ey uses a two level
rekeying mechanism, using the key to initialialize the level 1 keystream generator
to produce the initial state for the level 2 keystream generator, which produces
the actual keystream used to encrypt the data.

We use a known keystream to reconstruct the initial state for the level 2
keystream generator, which we then use to reconstruct the initial state for the
level 1 keystream generator, from which we can directly deduce the encryption
key. Reconstructing the state of the level 2 keystream generator takes an ex-
pected O(27%) to O(2%*) work effort (based on the amount of known keystream
available). Another attack with even more keystream available takes O(27?)
work.

By reconstructing the state from either 1 or 2 packets that are encrypted
during the same session, we can reconstruct the state of the level 1 keystream
generator in an expected O(23') or O(2%') time, which gives a total of O(273)
to 0(284) work effort.

This paper is structured as follows. In Section 2, the Ej keystream genera-
tor, and how it is used within the Bluetooth system is described. In Section 3,

previous analysis and results are summarized. Section 4 presents our base attack
against the keystream generator, Section 5 describes how to use it against the
level 2 generator. Section 6 deals with another approach to attack the keystream
generator and the second level, if a huge amount of known keystream is available.
Section 7 describes the basic attack on the first level of Ey , given one state of
the level 2 generator, while Section 2 deals with an attack given two such states.
Section 9 comments on attacking the full Fy system. Section 10 concludes and
discusses the ramifications on the Bluetooth system.

2 Description of Ej,

Ey is an encryption protocol that was designed to provide privacy within the
Bluetooth wireless LAN specification. When two Bluetooth devices need to com-
municate securely, they first undergo a key exchange protocol that completes
with each unit agreeing on a shared secret, which is used to generate the en-
cryption key (K¢). To encrypt a packet, this private key (K¢) is combined with
a publicly known salt value (EN_RAND) to form an intermediate key (K,)'.
Then, K, is used in a linear manner, along with the publicly known values, the
Bluetooth address, and a clock which is distinct for each packet, to form the
initial state for a two level keystream generator.

The keystream generator consists of 4 LESRs with a total length of 128 bits,
and a 4 bit finite state machine, refered to as the blender FSM. For each bit
of output, each LFSR is clocked once, and their output bits are exclusive-or’ed
together with one bit of output from the finite state machine. Then, the 4 LFSR
outputs are summed together. The two most significant bits of this 3-bit sum
are used to update the state of the finite state machine. We will refer to the 25
bit LFSR as LFSR1, the 31 bit LFSR as LFSR2, the 33 bit LFSR as LFSR3 and
the 39 bit LFSR as LFSR4. We will also refer to the finite state machine as the
blender FSM. The generator is shown in Figure 1. Note that the least significant
bit (LSB) of the sum of the four LFSRs is their bit-wise XOR.

™~
[_LFSR2] Add

[LFSR3] 7

/MSB__LSH
[LESR4

XOR)
Z];‘lender

Fig. 1. The Ey keystream generator.

! The attacks in the current paper actually provide the value of K.

There are logically two such keystream generators. The key of the first level
keystream generator is shifted into the LFSRs, while clearing the blender FSM.
Then, 200 bits are generated and discarded. Then, the output of this keystream
generator is collected, and is used to initialize the LSFRs of what we call the
second level keystream generator, which is structurally identical to the first level
keystream generator. This initialization is done by collecting 128 output bits,
parallel loading them into the LSFRs, and making the initial second level FSM
state be the final first level FSM state.

This output of this second generator is then used as an additive stream cipher
to encrypt the packet.

3 Description of Previous Work

In a sci.crypt.research posting [6], Markku-Juhani O. Saarinen showed an attack
that rederived the session key. This attack consisted of guessing the states of the
3 smaller LFSRs and the blender FSM, and using those states and the observed
keystream to compute whether there is a consistent output from LFSR4 that is
consistent with that assumption.

In the original posting, he estimated the attack to have overall complexity
of 0(2199). However, he assumed that only 125 bits of keystream were available,
and so he assumed a significant amount of time would be spent checking false
hits. Since significantly more keystream is available within a packet, the true
complexity is closer to O(2%%) expected.

Our attacks can be viewed as refinements of Saarinen’s attack by taking
the same basic approach of guessing the initial states of part of the cipher,
and checking for consistency. However, our attacks take advantage of additional
relationships within Ey and use them to gain some performance.

Ekdahl and Johansson have shown in [2] how to extract the initial state
from the keystream generator used in Fy given O(2%!) time and O(2°°) known
keystream. Their attack works by exploiting some weak linear correlations be-
tween the outputs of the LFSRs and the keystream output to verify if a guess on
one of the LFSRs is accurate. Previous to that, Hermelin and Nyberg published
in [4] an attack which recovered the initial state with O(2%) work and O(2%4)
known keystream. However, these are theoretical attacks as they require a far
larger amount of consecutive keystream output than is available.

A time-spaces tradeoff attack has been described by Jakobsson and Wetzel
[5]. Given N key streams and running time 7', it is possible to recover one of
the N keys if N +T > 232, A similar attack on the A5 keystream generator has
been previously described by Golic [3].

Our attacks resemble a general type of attack, the linear consistency attack,
which has been described as early as 1989 by Zeng, Yang, and Rao [7].

4 Base Attack on the Ey Keystream Generator

The base attack rederives the initial settings of the LFSRs, given a limited
(132 or so bits) keystream output. We will later show how this attack can be
separately optimized for both levels of the keystream generators. For this attack,
you assume the initial settings of the blender FSM and the contents of LF'SR1
and LFSR2, and maintain for each state the current settings of the blender
FSM, and a set £ of linear equations on the LF'SR3 and LF'SR4 output bits.
We will refer to those output bits as LFSR3,, and LFSR4,.

First, you initialize the set £ to empty. Then, you perform the below depth-
first search:

1. Call the state we are examining n. Compute the exclusive-or of the output
n of LFSR1 and LFSR2, the next output of the blender FSM (based on
the current state), and the known keystream bit Z,. If our assumptions are
correct to this point, this must be equal to the exclusive-or of the outputs
of LFSR3 and LFSRA4.

2. If the exclusive-or is zero, then we branch and consider the cases that both
LFSR3 and LFSR4 output a zero here, and that they both output a one.
When we assume a zero, we include in £ the two linear equations LF'SR3,, =
0 and LFSR4,, = 0, and when we assume a one, we include in £ the two
linear equations LFSR3, =1 and LFSR4, = 1.

3. If the exclusive-or is one, then we include in £ the single linear equation
LFSR3, # LFSR4,

4. If n > 33, then we include in £ the linear equation implied by the LF'SR3
tap equations. If n > 39, then we include in £ the linear equation implied
by the LFSR4 tap equations. In both cases, we check to see if the new
equations are inconsistent with the equations already in L. If they are, then
some assumption we made is incorrect and we backtrack to consider the next
case.

5. Compute the next state of the blender FSM. This is always possible, as the
next state depends on the current state (which we know) and the number of
LFSRs that output a one, which we know.

6. If n is more than 132, then we have found with high probability the initial
state of the encryption engine. If not, then we continue this search for state
n+1

There are two ideas behind this algorithm. The first is that the next state
function for the blender FSM depends only on the number of LSFRs that output
a one. So, when we assume that the outputs of LFSR3 and LFSR4 differ, we
need not decide which one outputs a zero and which one outputs a one — instead,
we can just note the fact that they differ and continue the search.

The other idea is that systems of linear equations in GF(2) can be quite
efficiently examined for contradictions.

How efficient is this attack? We provide some heuristic arguments. First,
consider the case that all the assumed bits of LFSRs 1 and 2 and the blender
state are correct.

With every step we learn if the sum S of the two output bits is either (a)
S €{0,2} or (b) S =1. Both cases (a) and (b) are equally likely.

Note Prob[S = 1] = 0.5, and Prob[S = 0] = Prob[S = 2] =0.25. If S =1,
we learn one linear equation on the state bits of LFSRs 3 and 4 (namely the
XOR of the two current output bits). If S € {0,2}, we branch and consider both
S=0and S =2. Both S =0 and S = 2 provide us with two linear equations
on the state bits of LFSRs 3 and 4.

On the average, we expect to learn 1.5 linear equations and branch 0.5 times
for each step. Once we have learned in total 334+39=72 equations, we are in a leaf
of the branch tree and know or "have guessed” all bits in the system. The number
of such leaves describes the amount of work. (Note that this analysis is based on
the heuristic assumption that no equations are redundant or contradictory, or
rather, that the effects of redundant and contradictory equations on the amount
of work cancel out.)

So, our branch tree has an “average” size determined by 272/3 = 224 leaves.
We initially assumed 60 bits and can expect to have made a correct assumption
after trying 2°% times, which gives us a running time of 0(259724) = O(2%%) on
the average.

Experiments demonstrate that our heuristic arguments on the efficiency of
the attack are reasonable, though perhaps a bit optimistic. For a random incor-
rect guess of initial state, the procedure examines an average of approximately 60
million (22%) states before terminating. Thus we can reconstruct the encryption
engine state in

0(2%%) expected time.

However, for both the first level and the second level keystream generator, we
can take advantage of special conditions that allow us to further optimize the
attack.

5 Attack on the Second Level Ey Keystream Generator

To optimize the attack against the second level keystream generator (which
produces the observed keystream directly), we note that the base attack is more
efficient if the outputs of LFSR3 and LFSR4 exclusive-or’ed together happens
to have a high hamming weight. To take advantage of this, we extend the attack
by assuming that, at a specific point in the keystream, the next n + 1 bits of
LFSR3 exclusive-or’ed with LFSR4 are n ones followed by a zero, where n will
be less than the length of the LFSRs. Since LFSR outputs are effectively random
and independent with such a length (since both LFSRs can generate any n + 1
bit pattern at any time with approximately equal probability if n < 32), the
probability a n + k length output contains such a sequence is approximately
k-2 (for k < 2™).

If the assumption that the LFSRs produce such an output at the specific point
in the keystream is false, we will fail to discover the internal state. However, the
amount of work required to make that determination turns out to be rather less
than O(28~"), and so if we have 2" or more starting places to test out, we

will find a place where the above procedure discovers the initial state with high
probability.

The expected amount of time the base attack will take when we precondition
the assumed outputs of LFSR3 and LFSR4 can be experimentally obtained. The
results are given in Table 5, together with the expected time for the full search.
Looking through this table, we can see that modest amounts of keystream reduce
the expected work somewhat, however, vast quantities of keystream reduce the
expected work only slightly further.

Table 1. The expected complexity and plaintext required for various values of n. Base
Search Time is the expected number of nodes traversed in a single run of the base
attack. Expected Plaintext Required is the expected amount of plaintext we need to
prosecute the attack. Expected Search Time is the expected total search time taken.

n|Base Search Time|Expected Plaintext Required|Expected Search Time
5 2718 165 bytes 2838
10 2733 1157 bytes 252
15 57T 33k 58TT
20 2205 M 2795
25 BYER: 39M DUE:
30 SIT T e 576

Formally, the algorithm is:

1. Select a position in the known keystream that is the start of more than 132
consecutive known bits.

2. Cycle through all possible combinations of 4 bits of blender FSM state, 25
bits of LFSR1 state and the last 30 — n bits of LFSR2 state

3. Compute the initial n + 1 bits of LFSR2 state that is consistent with the
exclusive-or of LEFSR3 and LFSR4 consisting of n ones and then zero.

4. Run the base attack on that setting. Stop if it finds a consistant initial
setting.

The above algorithm runs the base attack 2°°~" times and has a 2=" prob-
ability of success for a single location.

Note that, even though a single packet has a payload with a maximum of
2745 bits, we can have considerably more than 2745 bits of known keystream,
if we know the plaintext of multiple packets. All the next phase of the attack
needs to know is the initial state of the second level keystream generator for a
packet — it does not matter which. If we have multiple packets, we can try all of
them, and we will be successful if we manage to find the initial state for any of
them.

6 Another Attack on the Second Level Generator

Given a huge amount of known keystream, there is another technique to attack
the second level keystream generator more efficiently. The basic attack requires
to assume the blender state and the states of both LFSR1 and LFSR2 (i.e.
4 + 25 + 31 bits = 60 bits). Now, we start with assuming only the blender and
LFSRI1 states (29 bits), at the beginning of the attack. During the course of the
attack, we continue to make assumptions on how the blender state is updated.

Denote the sum of the outputs of LFSR2, LFSR3, and LFSR4 by S. Obvi-
ously, S € {0, 1,2,3}. Since we always know (based on previous assumptions) the
current blender and LFSR1 state, we only need to know S in order to compute
the next blender state. The current output bit tells if S is odd or not. Thus, we
know if either (a) S in {0,2} or (b) S in {1,3}.

Both cases (a) and (b) are equally likely. And in both cases we learn one
linear equation, namely we learn the XOR. of the output bits of the LFSRs 2—-4.

Now consider the conditional probabilities Prob[S = 2|(a)] and Prob[S = 1|(b)].
Assuming the three output bits are independent uniformly distributed random
bits (which they are, approximately), we get

Prob[S = 2|(a)] = Prob[S = 1{(b)] = 0.75.

Instead of branching, as we did in the base attack, we simply assume the likely
case S € {1,2}, ignoring S =0 and S = 3.

We need 31 + 33 + 39 = 103 linear equations to entirely restore the states of
the LFSRs 2—4. The assumptions we get here are linearily independent. If both
our initial assumptions on the 29 state bits of blender and LFSR1 and our 103
assumptions on the sum S are correct, we have found restored the correct state.
We can check so by computing d output bits (with § > 29) and comparing the
output stream we get by our assumed FEy state with the true output stream.

Within these 103 clocks the random variable S takes 103 values Sy, So, ... €
{0,1,2,4} with Prob[S; € {1,2} = 0.75]. The attack works if S; € {1,2} and
Sy € {1,2} and ...and Sio3 € {1,2}. Making the heuristic (but apparently
plausible) argument that the S; behave like 103 independent random variables,
the probability p = Prob[S; € {1,2}and ... and S103 € {1,2}] is

p=0.75'""~1.35%x 10713 27427,

If the initially assumed 29 bits are correct, the attack requires less than 24% bits
of known keystream and less than 243 steps (each step means to solve a system
of 103 linear equations). Thus the entire attack needs

less than 2*% bits of known keystream

and

272

less than steps.

7 Attack on the First Level E; Keystream Generator

To attack the first level keystream generator (which produces the initial LFSR,
and blender FSM states), we first note that the key setup sets the FSM state of
the second level keystream generator to be the final contents of the FSM state
after the first level generator has produced the last bit for the LFSR state. We
also note that the next-state function of the cipher is invertible — the LFSRs
can be run backwards as easily as forwards, and the FSM next state function is
invertible given a current LFSR state. We can also test the base attack, and find
that it works essentially as well on the backwards cipher as it does the forward
cipher.

This suggests this attack: when given one state of the level 2 generator, cycle
through all possible combinations of 25 bits of LESR1 state and 31 bits of LFSR2
state, and use the base attack on the reversed cipher, using as the initial FSM
contents the initial contents of the phase 2 FSM. Because we are cycling through
an expected O(2°%) LFSR states, and each check is expected to take O(22¢) time,
we should expect to find the first level initial position in O(28!) time.

8 Attack on the First Level Ey Keystream Generator
Given Two Second Level Keystreams

Now, let us consider a possible attack if the attacker has the first level output
for two distinct packets that were sent with the same key. In this case, we first
note that both keystreams have a clock associated with it, and that the clock is
the only thing that differs. We further note that the method of combination is
linear, hence if we know the xor differential in the clock (which we do, because
we know the actual clock values), we know the xor differential of the first level
LFSRs.

We can use this to optimize the attack further, as follows, where we will
indicate the two known sides with as z4 and zp, and where £ is a set of linear
equations on the outputs of LESR24, LFSR34, LFSR4 4.

Assume the contents of LFSR14 (which also gives you LF'SR1g, because of
the known differential between the two).

Initialize the set £ to empty.

Perform the following depth-first search

1. Call the state we are examining n. Compute the output na, np of
LFSR1,4, LFSR1p, the previous output of the blender FSMs based
on the current state), and the known keystream bit Z%, Z%. If our as-
sumptions are correct to this point, this must be equal to the exclusive-
or of the outputs of LFSR2,, LFSR3,, LFSR4, and of LFFSR2p,
LFSR3p, LFSRAgR.

2. Check the known differential in LFSR24, LESR3 4, LFSR44, LFSR2p,
LFSR3p, LFSR4p to see if there is a setting of those bits that satisifies
both the known xors and the known differentials. If there is not, then
backtrack to consider the next case.

3. If we reach here, there are four possible settings of the outputs of LF'SR2 4,
LFSR34, LFSRA4, which are consistent with known xors and differen-
tials. At least two of those settings will also update both blender FSMs
identically, and will differ in precisely two bits. Here, we branch and
consider three cases: one case that corresponds to the two settings which
updates both blender FSMs identically, and the other two cases corre-
sponding to the other two settings. For the first case, we include in £
the linear equation implied by the two bits that differ, and the linear
equation implied by the third bit setting. For the other two cases, we
include in £ three linear equations giving the three bit settings.

4. If n > 31, then we include in £ the linear equation implied by the
LFSR24 tap equations.

5. If n > 33, then we include in £ the linear equation implied by the
LFSR34 tap equations. If n > 39, then we include in £ the linear
equation implied by the LFSR4 4 tap equations. In all three cases, we
check to see if the new equations are inconsistent with the equations
already in L. If they are, then some assumption we made is incorrect
and we backtrack to consider the next case.

6. Compute the previous state of the blender FSMs. This is always possible,
as the next state depends on the current state (which we know) and the
number of LFSRs that output a one, which we know.

7. If n is more than 128, then we have found with high probability the initial
states of the encryption engines. If not, then we continue this search for
state n + 1

Experiments show that the above procedure examines an expected O(2°!) nodes
during the search.

9 Attack Against Full E

Below is how we can combine these attacks into an attack on the full Ey encryp-
tion system.

Assume we have an amount of known keystream generated with an unknown
session key, which may be from a single packet or it may be from multiple
packets. We select n based on the amount of known keystream. We can then
use the attack shown in Section 5 to find the initial LFSR and blender FSM
settings for a packet generated by that session key. If the cost of finding the
initial LFSR and blender FSM settings for a second packet is less than O(28!),
then we find a second one. Then, we either use the attack shown in Section 7 to
find all possible initial LFSR settings that generated that initial setting (if we
have one initial LFSR setting), or we use the attack shown in Section 8 if we have
two initial LFSR settings. Once we find the initial LFSR settings that generates
the observed output, we can step the LFSRs back 200 cycles, and use linear
transformations to eliminate the Bluetooth address and the block to reconstruct
the session key K{., and verify that potential key by using to to decrypt other
packets.

If we denote the amount of effort to find a LFSR and blender setting given
n bytes of known keystream as F'(n) (see table 5), then the total effort for this
attack is

O(min(F(n) + 2%, 2F(n/2) + 2°!)) work.

This is O(2%) if you have barely enough keystream to uniquely identify the
session key (eg., 140 bits), and drops to O(277) if you have a gigabit of known
keystream.

We can further reduce the effort down to

0(2") work,

if about 14000 gigabit bits of keystream are available. We simply use the attack
from Section 6 twice, to recover two states of the level 2 generator, and then
continue with the attack from Section 8.

These results are summarized in Figure 2.

86 3
O
84 i
O 3 3 3
T O e — — —
L i ? i i
=
i O
% 80 :
S ‘ - O ‘
S el S S S S
3 : : @ :
2
)
N
[@)) I e
(@) 74
- O
72
70 : : : :
0 10 20 30 40 50

Log2 Available Keystream

Fig. 2. Expected work effort required to recover session key, versus known keystream.

10 Conclusions and Open Problems

We described methods for rederiving the session key for Ey given a limited
amount of known keystream. This session key will allow the attacker to decrypt
all messages in that session. We showed that the real security level of Ej is
no more than 73-84 bits (depending the amount of keystream available to the
attacker), and that larger key lengths suggested by the Bluetooth specification?
would not provide additional security.

We empicically observed that the technique from Section 6 (assume the
blender state and LFSR1 only, and build up a set of equations based on the
states of LFSR2, LFSR3 and LFSR4) posed some practical problems, because
the equations created are rather complex. Also, the technique requires a huge
amount of known keystream. It would be interesting to develop improved tech-
niques to handle the set of linear equations more efficiently. Also, it would be
interesting to reduce the required amount of known keystream.

Another approach for more practical attacks on Ey and Bluetooth would be
to exploit the weak mixing of the clock into the first level LFSRs, which will, at
attacker known times, leave three of the LFSRs with zero differential.

References

1. Bluetooth SIG, ”Bluetooth Specification”, Version 1.0 B,

http://www.bluetooth.com/

2. P. Ekdahl, T. Johansson, ”Some Results on Correlations in the Bluetooth Stream
Cipher”, Proceedings of the 10th Joint Conference on Communications and Coding,
Obertauern, Austria, March 11-18, 2000.

. J. Golic, Eurocrypt 1997.

. M. Hermelin, K. Nyberg, ” Correlation Properties of the Bluetooth Combiner”, pro-
ceedings of ICISC 99, LNCS 1787, Springer, 1999.

5. M. Jakobsson, S. Wetzel, ”Security Weaknesses in Bluetooth”, RSA Conference

2001.

M. Saarinen, ”Re: Bluetooth und E0”, Posting to sci.crypt.research, 02/09/00.

. K. Zeng, C.-H. Yang, T. Rao ”On the Linear Consistency Test (LCT) in Cryptanal-
ysis with Applications”, Crypto ’89, Springer LNCS 435, pp. 164-174.

= W

N o

2 “For the encryption algorithm, the key size may vary between 1 and 16 octets (8-128
bits). The size of the encryption key shall be configurable for two reasons. [First is
export provisions]. The second reason is to facilitate a future upgrade path for the
security without a costly redesign of the algorithms and the encryption hardware;
increasing the effective key size is the simplest way to combat increased computing
power at the opponent side. Currently (1999) it seems that an encryption key size of
64 bits gives satisfying protection for most applications.” [1, Section 14, page 148]

