
Correlation Properties of the BluetoothCombinerMiia Hermelin and Kaisa NybergNokia Researh Center, Helsinki, Finlandmiia.hermelin�nokia.om, kaisa.nyberg�nokia.omAbstrat. In its intended usage the lengths of the key stream sequenesprodued by the Bluetooth stream ipher E0 are stritly limited. In thispaper the importane of this limitation is proved by showing that theBluetooth stream ipher with 128 bit key an be broken in O(264) stepsgiven an output key stream segment of length O(264). We also show howthe orrelation properties of the E0 ombiner an be improved by makinga small modi�ation in the memory update funtion.1 IntrodutionBluetoothTM is a standard for wireless onnetivity spei�ed by the BluetoothTMSpeial Interest Group in [1℄. The spei�ation de�nes a stream ipher algorithmE0 to be used for point-to-point enryption between the elements of a Bluetoothnetwork. The struture of E0 is a modi�ation of a summation bit generatorwith memory. In this paper we all it the Bluetooth ombiner and analyze itsorrelation properties. A few orrelation theorems originating from [4℄ are statedand exploited in the analysis. Also a new kind of divide-and-onquer attak isintrodued, whih shows the importane of limiting the lengths of produed keystream sequenes.As a onsequene of these results, we propose a modi�ation to the Bluetoothombiner. This modi�ation ould be done at no extra ost, that is, it doesnot inrease the omplexity of the algorithm. But, on the other hand, it wouldimprove the orrelation properties of the Bluetooth ombiner to some extent.However, as long as no pratial attak is known against the urrent version ofthe Bluetooth ombiner, the results given in this paper remain theoretial.2 Correlation Theorems2.1 De�nitions and NotationLet us introdue the notation to be used throughout this paper. We shall onsiderthe �eld GF (2n) as a linear spae with a given �xed basis, and denote by xt ann-dimensional vetor in GF (2n) as xt = (x1t ; x2t ; : : : ; xnt ): The inner produt \�"between two vetors w = (w1; w2; : : : ; wn) and x = (x1; x2; : : : ; xn) of the spaeGF (2n) is de�ned asw � x = w1x1 � w2x2 � : : :� wnxn:



The linear funtion Lu(x) is thenLu(x) = u � x; u; x 2 GF (2n):We use the same de�nition of orrelation between two Boolean funtions as in[3℄, where it is also referred to as \normalized orrelation".De�nition 1. Let f; g : GF (2n)! GF (2) be Boolean funtions. The orrelationbetween f and g is(f; g) = 2�n(#fx 2 GF (2n) j f(x) = g(x)g �#fx 2 GF (2n) j f(x) 6= g(x)g):Sometimes the notation x(f(x); g(x)) is used to emphasize the variable withrespet to whih the orrelation is to be alulated.Finally, we reall Parseval's theorem, whih implies, in partiular, that anyBoolean funtion is orrelated to some linear funtions.Theorem2. (Parseval's Theorem)Xw2GF (2n) (f; Lw)2 = 1:2.2 Correlation TheoremsIterated strutures and ombinations of transformations with ommon inputare frequently seen building bloks of ryptographi algorithms. The followingorrelation theorems are useful in the analysis of propagation of orrelations oversuh strutures. The proofs of the theorems an be found in [4℄.Theorem3. Given funtions f : GF (2n)�GF (2k)! GF (2) and g : GF (2m)!GF (2k) we seth(x; y) = f(x; g(y)); x 2 GF (2n); y 2 GF (2m):Then, for all u 2 GF (2n); v 2 GF (2m),x;y(h(x; y); u � x� v � y) = Xw2GF (2k) x;z(f(x; z); u � x� w � z)y(w � g(y); v � y):We note that Theorem 3 an be onsidered as a generalization of Lemma 2 of[3℄. In the seond orrelation theorem a Boolean funtion, whih is a sum of twofuntions with partially ommon input, is onsidered.Theorem4. Let f : GF (2n)�GF (2k)! GF (2) and g : GF (2k)�GF (2m)!GF (2) be Boolean funtions. Then, for all u 2 GF (2n); w 2 GF (2m),x;y;z(f(x; y)� g(y; z); u � x� w � z)= Xv2GF (2k) x;y(f(x; y); u � x� v � y)y;z(g(y; z); v � y � w � z):



If here the two funtions f and g, and the two linear ombinations u and w arethe same, we have the following orollary.Corollary 5. Let f : GF (2n)�GF (2k)! GF (2) be a Boolean funtion. Then,for all u 2 GF (2n);x;y;�(f(x; y)� f(�; y); u � (x� �)) = Xv2GF (2k) x;y(f(x; y); u � x� v � y)2:3 Combination GeneratorsIn [3℄ an example of a summation bit generator with one bit of memory isintrodued and analyzed. The ombiner of the Bluetooth key stream generatoran be onsidered as a variation of the thoroughly analyzed basi summationbit generator, see [3℄ and [2℄. A general lass of ombination generators withmemory giving the generators of [3℄ and [1℄ as speial ases is de�ned as follows:zt = nMi=1 xit � 0t (1)t = f(xt�1; t�1; : : : ; t�d): (2)Here xt = (x1t ; : : : ; xnt ) 2 GF (2n) is the fresh input to the ombiner at time tand 0t 2 GF (2) is the one-bit input from the memory, t = 0; 1; 2; : : :. The freshinput is formed by n independent sequenes xi = (xi0; xi1; : : :), i = 1; 2; : : : ; n,whih are typially generated by n linear feedbak shift registers.The memory onstitutes of md bits arranged as a register of d onseutiveells of m bits eah. The memory is updated by omputing a new m-bit t =(0t ; : : : ; mt ) using a funtion f from the fresh input and from the ontents of thememory saving the new t in the memory and disarding t�d. The output bitzt is omputed as an xor-sum of the fresh input xt and the previously omputedupdate t of the memory.Correlation attaks aimed at reovering the keys, whih determine the gen-eration of the fresh input, are based on orrelations between a number of freshinput bits and the output bits. For the type of generators de�ned by (1) suh or-relations relations an be derived from orrelations between onseutive \arry"bits 0t .Suh orrelations are usually found by exhaustive searh. This is the asealso with the Bluetooth ombiner whih is suh a relatively small system thatthis kind of \trial and error"-searh is possible. In larger systems, however, somemore sophistiated means for �nding these orrelation equations should be used.One suh method is presented in [2℄.4 Bluetooth CombinerBluetooth hips are small omponents apable of short range ommuniationwith eah other. The Bluetooth spei�ation is given in [1℄. In the seurity part



of [1℄ an enryption algorithm E0 is spei�ed to be used for protetion of theon�dentiality of the Bluetooth ommuniation.The algorithm E0 is of the form spei�ed by (1)and (2). It onsists of fourLFSRs of length 128 in total, a non-linear memory update funtion f , whih isa omposition of a nonlinear f1 and a linear mapping T .The funtions de�ne the following reursive equations. The output key se-quene zt, used to enipher the plaintext, iszt = x1t � x2t � x3t � x4t � 0t ;where (x1t ; x2t ; x3t ; x4t ) is the fresh input at time t produed by the four LFSRs.Non-linearity is represented in the sequene st; de�ned by the following formula,where \+" means the ordinary integer sum:st+1 = (s1t+1; s0t+1) = f1(xt; t) = �x1t + x2t + x3t + x4t + 21t + 0t2 � :The funtion f1 introdues the neessary non-linearity in the system, as integersummation is non-linear in GF (2): The memory bits t are then de�ned withthe aid of st ast+1 = (1t+1; 0t+1) = T (st+1; t; t�1) = T0(st+1)� T1(t)� T2(t�1):Here T0; T1 and T2 are linear transformations. Although non-linearity is ruialfor seurity, the hoie of the linear mapping T has also ertain inuene to theseurity of the E0 algorithm, as we will see later.4.1 The Mapping TThe linear mapping T of E0 mix the old bits from the memory to the newupdated memory bits. The main fous of this work is to investigating its role inthe orrelation properties. For the given f1 we see (.f. Table 1) that (s0t ; 0t�1�u � xt) = 0, for all u 2 GF (2): Hene these are not useful in orrelation attaks.On the other hand, (sit; 1t�1 � v00t�1 � u � x0t) 6= 0; i = 0; 1.The mapping T onsists of three mappings, T0, T1 and T2, ast+1 = T (st+1; t; t�1)= T0(st+1)� T1(t)� T2(t�1):In matrix form, T0 = T1 = I , where I is a 2� 2 identity matrix. Further,T2 = �0 11 1�This means, the bits of t = (1t ; 0t ) are1t = s1t � 1t�1 � 0t�2 (3)0t = s0t � 0t�1 � 1t�2 � 0t�2: (4)With di�erent hoies of T0; T1 and T2 the orrelation properties of the systembeome di�erent. This shall be analyzed in setion 5.



4.2 Correlation Analysis of the Bluetooth CombinerThe memory in Bluetooth has four bits, two bits for eah two onseutive timesteps t and t� 1. The funtion, whih is used to form a new term zt of the keysstream, is linear. The non-linearity is gained from the funtion f1, whih is usedto alulate st: As argued in [3℄, and in more general terms in [2℄, there remainalways some orrelations in suh a system. They shall be analyzed next.The analysis exploits the orrelations of the form(w � st+1; u � xt � v � t)where u 2 GF (24) and v = (v1; v0) 2 GF (22): Di�erent hoies of u and vorrespond to di�erent linear ombinations of x1t ; x2t ; x3t ; x4t ; 1t and 0t . In thefollowing Table 1 all the orrelations are presented.v1 v0 weight of u s1t+1 s0t+1 s1t+1 � s0t+10 0 0 0 0 � 581 14 0 02 0 0 183 0 0 04 0 0 � 180 1 0 14 0 01 0 0 182 0 0 03 0 0 � 184 � 14 0 01 0 0 58 � 14 01 0 0 142 � 18 14 03 0 0 04 18 � 14 01 1 0 0 0 141 � 18 14 02 0 0 03 18 � 14 04 0 0 � 14Table 1. The orrelations for s1t+1; s0t+1 and s1t+1 � s0t+1:We note that, sine the system is symmetri with respet to eah xjt , only theHamming weight of u is of importane. We also see that for s0t+1, the orrelationis zero, if v1 = 0. Next we present derivation of the strongest orrelation relationwe found within the Bluetooth ombiner.



Add 0t�3 to the both sides of (4) and rearrange the terms to get0t � 0t�1 � 0t�3 = s0t � 1t�2 � 0t�2 � 0t�3: (5)Next we use Theorem 3 to get(0t � 0t�1 � 0t�3; 0) = (s0t ; 1t�2 � 0t�2 � 0t�3)= Xw2GF (22) (s0t ; w � t�1)(w � t�1; 0t�2 � 1t�2 � 0t�3);with u = 0, v = (0; 0; 1; 1; 1; 0) and y = (s0t�1; s1t�1; 0t�2; 1t�2; 0t�3; 1t�3): Nowfrom Table 1 we know, that the terms of the sum are zero for w = (0; 1); w =(1; 1) and w = (0; 0): Only the term with w = (1; 0) remains. So, the orrelationequation is simpli�ed to(0t � 0t�1 � 0t�3; 0)= (s0t ; 1t�1)(1t�1; 0t�2 � 1t�2 � 0t�3)= (s0t ; 1t�1)(s1t�1; 0t�2):Here the last equation is obtained by moving bak in time for one step in equation(3), so that1t�1 = 1t�1 � s1t�1 � 0t�3:Using the values of Table 1, we �nally get(0t � 0t�1 � 0t�3; 0) = �14 � 14 = � 116 : (6)After this we notie thatzt � zt�1 � zt�3 = 4M1 xit � 4M1 xit�1 � 4M1 xit�3 � 0t � 0t�1 � 0t�3:We onlude by equation (6) that(zt � zt�1 � zt�3; 4M1 xit � 4M1 xit�1 � 4M1 xit�3) = � 116 : (7)Sine the output funtion of the Bluetooth ombiner is XOR, it is maximumorder orrelation immune. Hene divide and onquer attaks in their standardform are not useful for determining the initial states of the LFSR's. In setion 6it is shown how the ahieved orrelation relation an be utilized to determine atheoretial upper-bound of the level of the seurity of the Bluetooth ombiner.



5 Alternative Mappings for Mixing the Carry BitsThe goal of this setion is to investigate, how the hoie of the mapping T a�etsthe orrelation properties of the Bluetooth ombiner. In partiular, we show thatthe mapping T an be seleted in suh a way that more than two linear approxi-mations are needed when establishing a orrelation relation between onseutivearry bits.Our method exploits a matrix whih makes it possible to onsider all possiblelinear approximations of the funtion f1 simultaneously.Let T0; T1 and T2 be arbitrary 2� 2 matries:T0 = � t10 t20t30 t40� ; T1 = � t11 t21t31 t41� ; and T2 = � t12 t22t32 t42:�Thent = T0st � T1t�1 � T2t�2: (8)We write T1 = A� B. Here the analyst an hoose A and B in whih way everis onvenient, as long as their sum is T1. The equation (8) an be written ast = T0st �At�1 �Bt�1 � T2t�2: (9)We perform one iteration by inserting equation (8), applied for t� 1 instead oft, to the equation (9) and gett = T0st �Bt�1 �AT0st�1 �AT1t�2 �AT2t�3 � T2t�2: (10)Now, A may be hosen. Let D be a matrix of the formD = �d1 d20 d4� :As the analyst wishes to minimize the number of orrelation approximations, shewants 0t not to depend on 1t�3. Therefore, she hooses AT2 = D: If we assumethat T2 is invertible then suh a hoie is always possible. Inserting B = T1 �Ainto equation (10), as well as A = DT�12 , we havet = T0st�(T1�DT�12 )t�1�(DT�12 T0)st�1�(DT�12 T1�T2)t�2�Dt�3:(11)In order to take the orrelation approximations into onsideration, we write themin matrix form asst = Xtt�1;whereXt = � e1t e2te3t e4t � ;and st and t�1 are taken as vertial vetors.



We see from Table 1, that if e3t = 0 the orrelations for s0t(s0t ; e3t � 1t�1 � e4t � 0t�1 � u � xt);are always zero. Therefore we an presume e3t = 1: The hoie of u does nota�et the best non-zero values of the orrelations. Therefore, we shall drop u �xtand merely study the ombinations of sit+1 and jt .We approximate twie by inserting st = Xtt�1 into equation (11), whihyieldst = (T0Xt�T1�DT�12 )t�1�(DT�12 T0Xt�1�DT�12 T1�T2)t�2�Dt�3:(12)In Bluetooth the generated key-sequene zt does not depend on 1t but merely on0t . Hene, similarly as above in setion 4.2, we aim at establishing a orrelationrelation between zero omponents of t.Theorem6. Let in the Bluetooth ombiner generator T0 = T1 = I and T2 anarbitrary invertible 2� 2 matrix. If t32 = 1; then two orrelation approximationssuÆes to establish a orrelation between the input and output.Proof. Substitute T0 = T1 = I and the general form of T2 into (12) and obtainthe following orrelation relation for 0t :0t = (1� d4; e4t � 1� d4t12) � t�1� (d4e1t�1 � d4t12 � d4 � 1; d4e2t�1 � d4t12e4t�1 � d4t12 � t42) � t�2� d40t�3To have only two approximations means that there must be neither 1t�1 nor1t�2 in the equation above, i.e.1� d4 = 0 (13)andd4e1t�1 � d4t12 � d4 � 1 = 0: (14)If d4 = 0; then the other approximation will anel out, so that equation (11)transforms into the initial equation0t = s0t � 0t�1 � 1t�2 � 0t�2:As this is not what the analyst wants, she hooses d4 = 1 and equation (13) istrue. From (14) we then get thate1t�1 � t12 = 0:Now we hek from Table 1 that (s1t�1; 0t�2 � u � xt�2) 6= 0 for some u: Heneit is possible to use this orrelation if t12 = 0: Similarly, if t12 = 1; we see thate1t�1 = 1 is possible, as (s1t�1; 1t�2 � v0 � 0t�2 � u � xt�2) 6= 0 for some hoie ofu and v0: ut



In the ase of the initial hoie of Bluetooth T2, we have t32 = 1: So, as wesaw earlier in setion 4.2, only two iteration approximations are needed. Theapproximation matries Xt in the ase of (6) wereXt�1 = �0 01 0� Xt = �0 11 0� :From Table 1 we see that (s1t�1; 1t�2) = 58 : HeneT2 = �1 11 0�with t12 = 1 would have been still a weaker hoie than the urrent T2 in Blue-tooth. Next we show that a stronger hoie would have been possible.Theorem7. Let t32 = 0: Then at least three approximation rounds are needed.Proof. If t32 = 0; and T2 is invertible as assumed, then t12 = t42 = 1: Also T�12 =T2: LetD = �d1 d2d3 d4� :Then, as in (12) we havet = (Xt � I �DT2)t�1 � (DT2Xt�1 �DT2Xt�1 �DT2 � T2)t�2;and further,0t = (1� d3; e4t � 1� t22d3 � d4) � t�1� [d3e1t�1 � e3t�1(t22d3 � d4)� d3;d3e2t�1 � e4t�1(t22d3 � d4)� t22d3 � d4 � 1℄ � t�2� (d3; d4) � t�3Now, if d3 = 1; then we have 1t�3 in the equation, so we need to do at least onemore approximation, hene two approximations is not enough. If d3 = 0; then1t�1 is within the equation of 0t and again more than two approximations areneeded. utAn example of a matrix T2, whih requires at least three approximations toget orrelation relations between the arry bits 0t from di�erent time instanes,is T2 = I . We onsider, for example, the orrelation between 0t and 0t�4. Theorrelation relation ould involve some xt variables at appropriate moments t,but in what follows we restrit to the ase where the Hamming weight of u isalways zero.Corresponding to the equations (3) and (4) we now have1t = s1t � 1t�1 � 1t�20t = s0t � 0t�1 � 0t�2:



Sine no xt�1 is involved, we have by Theorem 3 and with the aid of Table 1(0t ; 0t�4) = (s0t ; 0t�1 � 0t�2 � 0t�4)=Xw (s0t ; w � t�1)(w � t�1; 0t�1 � 0t�2 � 0t�4)= (s0t ; 1t�1)(1t�1; 0t�1 � 0t�2 � 0t�4):The seond equality follows from Theorem 3, and in the third we noted that theonly non-zero orrelation for (s0t ; w � t�1) is due to w = (1; 0): We ontinue inthe same manner to obtain:(0t ; 0t�4)= �14(s1t�1 � s0t�1; 1t�2 � 1t�3 � 0t�3 � 0t�4)= �14Xw (s1t�1 � s0t�1; w � t�2)(w � t�2); 1t�2 � 1t�3 � 0t�3 � 0t�4)= �14((s1t�1 � s0t�1; 0)(1t�2 � 1t�3 � 0t�3 � 0t�4; 0)+ (s1t�1 � s0t�1; 1t�2 � 0t�2)(0t�2; 1t�3 � 0t�3 � 0t�4)): (15)From the two terms inside the brakets only the last one is non-zero. To see thiswe alulate the �rst term(1t�2 � 1t�3 � 0t�3 � 0t�4; 0)= (s1t�2; 0t�3 � 1t�4 � 0t�4)=Xw (s1t�2; w � t�3)(w � t�3; 0t�3 � 1t�4 � 0t�4)= (s1t�2; 0t�3)(1t�4 � 0t�4; 0) + (s1t�2; 1t�3)(1t�3; 0t�3 � 1t�4 � 0t�4):In the last equality the �rst term in the sum is zero, sine the memory bits onthe same moment are assumed to be statistially independent. We ontinue withthe seond part of the sum:(0t�3 � 1t�3; 1t�4 � 0t�4)= (s1t�3 � s0t�3; 1t�5 � 0t�5)=Xw (s1t�3 � s0t�3; w � t�4)(w � t�4; 1t�5 � 0t�5)= �58((s1t�3 � s0t�3; 0)(1t�5 � 0t�5; 0)+ (s1t�3 � s0t�3; 1t�4 � 0t�4)(1t�4 � 0t�4; 1t�5 � 0t�5))= �58 � 14(1t�4 � 0t�4; 1t�5 � 0t�5):These alulations are easy to generalize to any moment t� j; j = 0; 1; 2; : : : ; soatually we have(0t�3 � 1t�3; 1t�4 � 0t�4)



= �� 532�k (1t�3�k � 0t�3�k; 1t�4�k � 0t�4�k):Hene, in�nitely many approximations should be done, and so the orrelationan be regarded as zero:(0t�3 � 1t�3; 1t�4 � 0t�4) = limk!1�� 532�k = 0:Let us now return to the equation 15. We have, that(0t ; 0t�4)= �14 � 14(0t�2; 1t�3 � 0t�3 � 0t�4)= � 116(s0t�2; 1t�3) = � 164 ;whih is signi�antly smaller than 116 in equation 6. In this manner, the orrela-tion an be alulated for other weights of u; too. The resulting values degenerateto a single produt, as above, so that the produt of the orrelations is alwayssigni�antly smaller than 116 :The Bluetooth ombination generator is a strengthened version of the basisummation bit generator. By inreasing the size of the memory the orrelationshave been redued. We have shown that with the same memory size, by makinga small modi�ation in the memory update funtion, it would be possible tofurther redue the orrelations.6 Ultimate Divide and ConquerIn this setion it is shown that divide and onquer attak beomes possible ifthe length of the given keystream is longer than the period p of the shortest(say, the �rst) LFSR used in the key stream generation. Assume that there is arelation with a non-zero orrelation � between a linear ombination of the shiftregister output bits(u10x1t � : : :� un0xnt )� : : :� (u1dx1t�d � : : :� undxnt�d)and the key stream bitsw0zt � w1zt�1 � : : :� wdzt�d;over a number of d+ 1 time steps. Then it follows by Corollary 5 that we havea orrelation relation between a linear ombination of the keystream bitsw0(zt � zt+p)� w1(zt�1 � zt+p�1)� : : :� wd(zt�d � zt+p�d)and a linear ombination of the LFSR output bitsu20(x2t � x2t+p)� : : :� un0 (xnt � xnt+p)� : : :�u2d(x2t�d � x2t+p�d)� : : :� und (xnt�d � xnt+p�d);



where the output bits from the �rst (the shortest) shift register anel, sinethey are equal.By Corollary 5, the strength of the orrelation over the period p is at least�2. Further, Corollary 5 shows how this lower bound an be improved. We statethis result in a form of a theorem as follows.Theorem8. For a ombination generator, assume that we have the followingorrelation(w0zt � w1zt�1 � : : :� wdzt�d;(u10x1t � : : :� un0xnt )� : : :+ (u1dx1t�d � : : :� undxnt�d)) = � 6= 0:Let the lengths of the registers be L1; : : : ; Ln and the periods p1; : : : ; pn. Thengiven a keystream of length p1p2 � � � pk+ 1�4 +d one an do exhaustive searh overthe Lk+1 + : : :+ Ln bits whih form the initial ontents of n� k registers.If the LFSR registers have primitive feedbak polynomials, then pi = 2Li�1.In most appliations n is even and the lengths Li are about the same. Then givena suÆiently strong orrelation between the input bits and the output bits of aombination generator, the omplexity to determine the omplete initial state oflength L is about O(2L=2). In other words, by generating key stream of lengthO(2L=2) one an suessfully arry out exhaustive searh over L=2 bits of theinitial state.6.1 Periodi Correlations in BluetoothComputation of the orrelations for the Bluetooth E0 ombiner is somewhatompliated due to multiple iteration. We make use of the relation 0t + 0t�1 +0t�3 = 0, see (6). Applying Theorem 3 we get(0t � 0t�1 � 0t�3 � 0t+p � 0t+p�1 � 0t+p�3; 0)= (s0t � s0t+p; 0t�2 � 1t�2 � 0t�3plus0t+p�2 � 1t+p�2 + 0t+p�3)= Xw;w02GF (22) (s0t � s0t+p; w � t�1 � w0 � t+p�1)�(w � t�1 � w0 � t+p�1; 0t�2 � 1t�2 � 0t�3 � 0t+p�2 � 1t+p�2 � 0t+p�3):Now we apply Theorem 4 to the �rst orrelation in the produt and get(s0t � s0t+p; w � t�1 � w0 � t+p�1)= Xu2GF (22) (s0t ; w � t�1 � u � x)(s0t ; w0 � t�1 � u � x):Here x has one, two, or three oordinates, depending on whether p is the leastommon period of of one, two, or three LFSRs, respetively.Let us now onsider the ase where p is the least ommon period of twoLFSRs. From Table 1 we see that these orrelations are nonzero if and only if



u = (0; 0) and w = w0 = (1; 0), or u = (1; 1) and w = w0 = (1; 0), or u = (0; 1)and w = w0 = (1; 1), or �nally, u = (1; 0) and w = w0 = (1; 1).The value w = w0 = (1; 1) leads to a longer orrelation relation extendingover at least two rounds, and hene are expeted be of less in amount, but stillnon-negative. Therefore, we disard the orresponding terms, and get a lowerbound to the orrelation from the remaining terms with w = w0 = (1; 0) asfollows(0t � 0t�1 � 0t�3 � 0t+p � 0t+p�1 � 0t+p�3; 0)� ((s0t ; 1t�1)2 + (s0t ; 1t�1 � x1t � x2t )2)�(1t�1 � 1t+p�1; 0t�2 � 1t�2 � 0t�3 � 0t+p�2 � 1t+p�2 � 0t+p�3)= ((s0t ; 1t�1)2 + (s0t ; 1t�1 � x1t � x2t )2) � Xu2GF (22) (s1t�1; 0t�2 � u � x)2= ((�1=4)2 + (1=4)2)(1=4)2 = 2�7;using the orrelation values given in Table 1.It should be stressed, however, that the presented ultimate divide and on-quer attak is of theoretial nature, and pratial only if the analyzer is givenaess to key stream extending over periods of partial input. For example, theBluetooth E0 algorithm in its intended use generates only short segments ofkeystream to enrypt eah plaintext frame starting from a new independentinitial state.7 ConlusionsWe have seen how the orrelations in the Bluetooth ombiner ould be reduedby making a small modi�ation in its memory update funtion. This improve-ment is, however, rather theoretial in nature, but quite interesting as suh. Themethods used in �nding this modi�ation are spei� to Bluetooth, but ouldbe easily adapted to other similar ombiner generators. The tehnique involvesa matrix desribing potential approximations based on known non-zero linearorrelations over the non-linear part of the memory update funtion.We also showed how any signi�ant orrelations over a ombiner an be usedto launh a divide and onquer attak against any ombiner generator providedthat suÆient amount of the output keystream is given. If the input to theombiner is produed using a ertain number of LFSRs with primitive feedbakpolynomials, and the number of bits of the total initial state is L, then theomplexity of this attak is upper bounded by O(2L=2). This will require theamount of same magnitude O(2L=2) of the output bits.We onlude that if the e�etive key length of a ombiner generator is re-quired to be about the same magnitude as the size of the initial state, thenthe usage of the generator must be restrited in suh a way that the length ofany keystream blok ever produed by this generator never exeeds the shortestperiod of the input sequenes.
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