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omAbstra
t. In its intended usage the lengths of the key stream sequen
esprodu
ed by the Bluetooth stream 
ipher E0 are stri
tly limited. In thispaper the importan
e of this limitation is proved by showing that theBluetooth stream 
ipher with 128 bit key 
an be broken in O(264) stepsgiven an output key stream segment of length O(264). We also show howthe 
orrelation properties of the E0 
ombiner 
an be improved by makinga small modi�
ation in the memory update fun
tion.1 Introdu
tionBluetoothTM is a standard for wireless 
onne
tivity spe
i�ed by the BluetoothTMSpe
ial Interest Group in [1℄. The spe
i�
ation de�nes a stream 
ipher algorithmE0 to be used for point-to-point en
ryption between the elements of a Bluetoothnetwork. The stru
ture of E0 is a modi�
ation of a summation bit generatorwith memory. In this paper we 
all it the Bluetooth 
ombiner and analyze its
orrelation properties. A few 
orrelation theorems originating from [4℄ are statedand exploited in the analysis. Also a new kind of divide-and-
onquer atta
k isintrodu
ed, whi
h shows the importan
e of limiting the lengths of produ
ed keystream sequen
es.As a 
onsequen
e of these results, we propose a modi�
ation to the Bluetooth
ombiner. This modi�
ation 
ould be done at no extra 
ost, that is, it doesnot in
rease the 
omplexity of the algorithm. But, on the other hand, it wouldimprove the 
orrelation properties of the Bluetooth 
ombiner to some extent.However, as long as no pra
ti
al atta
k is known against the 
urrent version ofthe Bluetooth 
ombiner, the results given in this paper remain theoreti
al.2 Correlation Theorems2.1 De�nitions and NotationLet us introdu
e the notation to be used throughout this paper. We shall 
onsiderthe �eld GF (2n) as a linear spa
e with a given �xed basis, and denote by xt ann-dimensional ve
tor in GF (2n) as xt = (x1t ; x2t ; : : : ; xnt ): The inner produ
t \�"between two ve
tors w = (w1; w2; : : : ; wn) and x = (x1; x2; : : : ; xn) of the spa
eGF (2n) is de�ned asw � x = w1x1 � w2x2 � : : :� wnxn:



The linear fun
tion Lu(x) is thenLu(x) = u � x; u; x 2 GF (2n):We use the same de�nition of 
orrelation between two Boolean fun
tions as in[3℄, where it is also referred to as \normalized 
orrelation".De�nition 1. Let f; g : GF (2n)! GF (2) be Boolean fun
tions. The 
orrelationbetween f and g is
(f; g) = 2�n(#fx 2 GF (2n) j f(x) = g(x)g �#fx 2 GF (2n) j f(x) 6= g(x)g):Sometimes the notation 
x(f(x); g(x)) is used to emphasize the variable withrespe
t to whi
h the 
orrelation is to be 
al
ulated.Finally, we re
all Parseval's theorem, whi
h implies, in parti
ular, that anyBoolean fun
tion is 
orrelated to some linear fun
tions.Theorem2. (Parseval's Theorem)Xw2GF (2n) 
(f; Lw)2 = 1:2.2 Correlation TheoremsIterated stru
tures and 
ombinations of transformations with 
ommon inputare frequently seen building blo
ks of 
ryptographi
 algorithms. The following
orrelation theorems are useful in the analysis of propagation of 
orrelations oversu
h stru
tures. The proofs of the theorems 
an be found in [4℄.Theorem3. Given fun
tions f : GF (2n)�GF (2k)! GF (2) and g : GF (2m)!GF (2k) we seth(x; y) = f(x; g(y)); x 2 GF (2n); y 2 GF (2m):Then, for all u 2 GF (2n); v 2 GF (2m),
x;y(h(x; y); u � x� v � y) = Xw2GF (2k) 
x;z(f(x; z); u � x� w � z)
y(w � g(y); v � y):We note that Theorem 3 
an be 
onsidered as a generalization of Lemma 2 of[3℄. In the se
ond 
orrelation theorem a Boolean fun
tion, whi
h is a sum of twofun
tions with partially 
ommon input, is 
onsidered.Theorem4. Let f : GF (2n)�GF (2k)! GF (2) and g : GF (2k)�GF (2m)!GF (2) be Boolean fun
tions. Then, for all u 2 GF (2n); w 2 GF (2m),
x;y;z(f(x; y)� g(y; z); u � x� w � z)= Xv2GF (2k) 
x;y(f(x; y); u � x� v � y)
y;z(g(y; z); v � y � w � z):



If here the two fun
tions f and g, and the two linear 
ombinations u and w arethe same, we have the following 
orollary.Corollary 5. Let f : GF (2n)�GF (2k)! GF (2) be a Boolean fun
tion. Then,for all u 2 GF (2n);
x;y;�(f(x; y)� f(�; y); u � (x� �)) = Xv2GF (2k) 
x;y(f(x; y); u � x� v � y)2:3 Combination GeneratorsIn [3℄ an example of a summation bit generator with one bit of memory isintrodu
ed and analyzed. The 
ombiner of the Bluetooth key stream generator
an be 
onsidered as a variation of the thoroughly analyzed basi
 summationbit generator, see [3℄ and [2℄. A general 
lass of 
ombination generators withmemory giving the generators of [3℄ and [1℄ as spe
ial 
ases is de�ned as follows:zt = nMi=1 xit � 
0t (1)
t = f(xt�1; 
t�1; : : : ; 
t�d): (2)Here xt = (x1t ; : : : ; xnt ) 2 GF (2n) is the fresh input to the 
ombiner at time tand 
0t 2 GF (2) is the one-bit input from the memory, t = 0; 1; 2; : : :. The freshinput is formed by n independent sequen
es xi = (xi0; xi1; : : :), i = 1; 2; : : : ; n,whi
h are typi
ally generated by n linear feedba
k shift registers.The memory 
onstitutes of md bits arranged as a register of d 
onse
utive
ells of m bits ea
h. The memory is updated by 
omputing a new m-bit 
t =(
0t ; : : : ; 
mt ) using a fun
tion f from the fresh input and from the 
ontents of thememory saving the new 
t in the memory and dis
arding 
t�d. The output bitzt is 
omputed as an xor-sum of the fresh input xt and the previously 
omputedupdate 
t of the memory.Correlation atta
ks aimed at re
overing the keys, whi
h determine the gen-eration of the fresh input, are based on 
orrelations between a number of freshinput bits and the output bits. For the type of generators de�ned by (1) su
h 
or-relations relations 
an be derived from 
orrelations between 
onse
utive \
arry"bits 
0t .Su
h 
orrelations are usually found by exhaustive sear
h. This is the 
asealso with the Bluetooth 
ombiner whi
h is su
h a relatively small system thatthis kind of \trial and error"-sear
h is possible. In larger systems, however, somemore sophisti
ated means for �nding these 
orrelation equations should be used.One su
h method is presented in [2℄.4 Bluetooth CombinerBluetooth 
hips are small 
omponents 
apable of short range 
ommuni
ationwith ea
h other. The Bluetooth spe
i�
ation is given in [1℄. In the se
urity part



of [1℄ an en
ryption algorithm E0 is spe
i�ed to be used for prote
tion of the
on�dentiality of the Bluetooth 
ommuni
ation.The algorithm E0 is of the form spe
i�ed by (1)and (2). It 
onsists of fourLFSRs of length 128 in total, a non-linear memory update fun
tion f , whi
h isa 
omposition of a nonlinear f1 and a linear mapping T .The fun
tions de�ne the following re
ursive equations. The output key se-quen
e zt, used to en
ipher the plaintext, iszt = x1t � x2t � x3t � x4t � 
0t ;where (x1t ; x2t ; x3t ; x4t ) is the fresh input at time t produ
ed by the four LFSRs.Non-linearity is represented in the sequen
e st; de�ned by the following formula,where \+" means the ordinary integer sum:st+1 = (s1t+1; s0t+1) = f1(xt; 
t) = �x1t + x2t + x3t + x4t + 2
1t + 
0t2 � :The fun
tion f1 introdu
es the ne
essary non-linearity in the system, as integersummation is non-linear in GF (2): The memory bits 
t are then de�ned withthe aid of st as
t+1 = (
1t+1; 
0t+1) = T (st+1; 
t; 
t�1) = T0(st+1)� T1(
t)� T2(
t�1):Here T0; T1 and T2 are linear transformations. Although non-linearity is 
ru
ialfor se
urity, the 
hoi
e of the linear mapping T has also 
ertain in
uen
e to these
urity of the E0 algorithm, as we will see later.4.1 The Mapping TThe linear mapping T of E0 mix the old bits from the memory to the newupdated memory bits. The main fo
us of this work is to investigating its role inthe 
orrelation properties. For the given f1 we see (
.f. Table 1) that 
(s0t ; 
0t�1�u � xt) = 0, for all u 2 GF (2): Hen
e these are not useful in 
orrelation atta
ks.On the other hand, 
(sit; 
1t�1 � v0
0t�1 � u � x0t) 6= 0; i = 0; 1.The mapping T 
onsists of three mappings, T0, T1 and T2, as
t+1 = T (st+1; 
t; 
t�1)= T0(st+1)� T1(
t)� T2(
t�1):In matrix form, T0 = T1 = I , where I is a 2� 2 identity matrix. Further,T2 = �0 11 1�This means, the bits of 
t = (
1t ; 
0t ) are
1t = s1t � 
1t�1 � 
0t�2 (3)
0t = s0t � 
0t�1 � 
1t�2 � 
0t�2: (4)With di�erent 
hoi
es of T0; T1 and T2 the 
orrelation properties of the systembe
ome di�erent. This shall be analyzed in se
tion 5.



4.2 Correlation Analysis of the Bluetooth CombinerThe memory in Bluetooth has four bits, two bits for ea
h two 
onse
utive timesteps t and t� 1. The fun
tion, whi
h is used to form a new term zt of the keysstream, is linear. The non-linearity is gained from the fun
tion f1, whi
h is usedto 
al
ulate st: As argued in [3℄, and in more general terms in [2℄, there remainalways some 
orrelations in su
h a system. They shall be analyzed next.The analysis exploits the 
orrelations of the form
(w � st+1; u � xt � v � 
t)where u 2 GF (24) and v = (v1; v0) 2 GF (22): Di�erent 
hoi
es of u and v
orrespond to di�erent linear 
ombinations of x1t ; x2t ; x3t ; x4t ; 
1t and 
0t . In thefollowing Table 1 all the 
orrelations are presented.v1 v0 weight of u s1t+1 s0t+1 s1t+1 � s0t+10 0 0 0 0 � 581 14 0 02 0 0 183 0 0 04 0 0 � 180 1 0 14 0 01 0 0 182 0 0 03 0 0 � 184 � 14 0 01 0 0 58 � 14 01 0 0 142 � 18 14 03 0 0 04 18 � 14 01 1 0 0 0 141 � 18 14 02 0 0 03 18 � 14 04 0 0 � 14Table 1. The 
orrelations for s1t+1; s0t+1 and s1t+1 � s0t+1:We note that, sin
e the system is symmetri
 with respe
t to ea
h xjt , only theHamming weight of u is of importan
e. We also see that for s0t+1, the 
orrelationis zero, if v1 = 0. Next we present derivation of the strongest 
orrelation relationwe found within the Bluetooth 
ombiner.



Add 
0t�3 to the both sides of (4) and rearrange the terms to get
0t � 
0t�1 � 
0t�3 = s0t � 
1t�2 � 
0t�2 � 
0t�3: (5)Next we use Theorem 3 to get
(
0t � 
0t�1 � 
0t�3; 0) = 
(s0t ; 
1t�2 � 
0t�2 � 
0t�3)= Xw2GF (22) 
(s0t ; w � 
t�1)
(w � 
t�1; 
0t�2 � 
1t�2 � 
0t�3);with u = 0, v = (0; 0; 1; 1; 1; 0) and y = (s0t�1; s1t�1; 
0t�2; 
1t�2; 
0t�3; 
1t�3): Nowfrom Table 1 we know, that the terms of the sum are zero for w = (0; 1); w =(1; 1) and w = (0; 0): Only the term with w = (1; 0) remains. So, the 
orrelationequation is simpli�ed to
(
0t � 
0t�1 � 
0t�3; 0)= 
(s0t ; 
1t�1)
(
1t�1; 
0t�2 � 
1t�2 � 
0t�3)= 
(s0t ; 
1t�1)
(s1t�1; 
0t�2):Here the last equation is obtained by moving ba
k in time for one step in equation(3), so that
1t�1 = 
1t�1 � s1t�1 � 
0t�3:Using the values of Table 1, we �nally get
(
0t � 
0t�1 � 
0t�3; 0) = �14 � 14 = � 116 : (6)After this we noti
e thatzt � zt�1 � zt�3 = 4M1 xit � 4M1 xit�1 � 4M1 xit�3 � 
0t � 
0t�1 � 
0t�3:We 
on
lude by equation (6) that
(zt � zt�1 � zt�3; 4M1 xit � 4M1 xit�1 � 4M1 xit�3) = � 116 : (7)Sin
e the output fun
tion of the Bluetooth 
ombiner is XOR, it is maximumorder 
orrelation immune. Hen
e divide and 
onquer atta
ks in their standardform are not useful for determining the initial states of the LFSR's. In se
tion 6it is shown how the a
hieved 
orrelation relation 
an be utilized to determine atheoreti
al upper-bound of the level of the se
urity of the Bluetooth 
ombiner.



5 Alternative Mappings for Mixing the Carry BitsThe goal of this se
tion is to investigate, how the 
hoi
e of the mapping T a�e
tsthe 
orrelation properties of the Bluetooth 
ombiner. In parti
ular, we show thatthe mapping T 
an be sele
ted in su
h a way that more than two linear approxi-mations are needed when establishing a 
orrelation relation between 
onse
utive
arry bits.Our method exploits a matrix whi
h makes it possible to 
onsider all possiblelinear approximations of the fun
tion f1 simultaneously.Let T0; T1 and T2 be arbitrary 2� 2 matri
es:T0 = � t10 t20t30 t40� ; T1 = � t11 t21t31 t41� ; and T2 = � t12 t22t32 t42:�Then
t = T0st � T1
t�1 � T2
t�2: (8)We write T1 = A� B. Here the analyst 
an 
hoose A and B in whi
h way everis 
onvenient, as long as their sum is T1. The equation (8) 
an be written as
t = T0st �A
t�1 �B
t�1 � T2
t�2: (9)We perform one iteration by inserting equation (8), applied for t� 1 instead oft, to the equation (9) and get
t = T0st �B
t�1 �AT0st�1 �AT1
t�2 �AT2
t�3 � T2
t�2: (10)Now, A may be 
hosen. Let D be a matrix of the formD = �d1 d20 d4� :As the analyst wishes to minimize the number of 
orrelation approximations, shewants 
0t not to depend on 
1t�3. Therefore, she 
hooses AT2 = D: If we assumethat T2 is invertible then su
h a 
hoi
e is always possible. Inserting B = T1 �Ainto equation (10), as well as A = DT�12 , we have
t = T0st�(T1�DT�12 )
t�1�(DT�12 T0)st�1�(DT�12 T1�T2)
t�2�D
t�3:(11)In order to take the 
orrelation approximations into 
onsideration, we write themin matrix form asst = Xt
t�1;whereXt = � e1t e2te3t e4t � ;and st and 
t�1 are taken as verti
al ve
tors.



We see from Table 1, that if e3t = 0 the 
orrelations for s0t
(s0t ; e3t � 
1t�1 � e4t � 
0t�1 � u � xt);are always zero. Therefore we 
an presume e3t = 1: The 
hoi
e of u does nota�e
t the best non-zero values of the 
orrelations. Therefore, we shall drop u �xtand merely study the 
ombinations of sit+1 and 
jt .We approximate twi
e by inserting st = Xt
t�1 into equation (11), whi
hyields
t = (T0Xt�T1�DT�12 )
t�1�(DT�12 T0Xt�1�DT�12 T1�T2)
t�2�D
t�3:(12)In Bluetooth the generated key-sequen
e zt does not depend on 
1t but merely on
0t . Hen
e, similarly as above in se
tion 4.2, we aim at establishing a 
orrelationrelation between zero 
omponents of 
t.Theorem6. Let in the Bluetooth 
ombiner generator T0 = T1 = I and T2 anarbitrary invertible 2� 2 matrix. If t32 = 1; then two 
orrelation approximationssuÆ
es to establish a 
orrelation between the input and output.Proof. Substitute T0 = T1 = I and the general form of T2 into (12) and obtainthe following 
orrelation relation for 
0t :
0t = (1� d4; e4t � 1� d4t12) � 
t�1� (d4e1t�1 � d4t12 � d4 � 1; d4e2t�1 � d4t12e4t�1 � d4t12 � t42) � 
t�2� d4
0t�3To have only two approximations means that there must be neither 
1t�1 nor
1t�2 in the equation above, i.e.1� d4 = 0 (13)andd4e1t�1 � d4t12 � d4 � 1 = 0: (14)If d4 = 0; then the other approximation will 
an
el out, so that equation (11)transforms into the initial equation
0t = s0t � 
0t�1 � 
1t�2 � 
0t�2:As this is not what the analyst wants, she 
hooses d4 = 1 and equation (13) istrue. From (14) we then get thate1t�1 � t12 = 0:Now we 
he
k from Table 1 that 
(s1t�1; 
0t�2 � u � xt�2) 6= 0 for some u: Hen
eit is possible to use this 
orrelation if t12 = 0: Similarly, if t12 = 1; we see thate1t�1 = 1 is possible, as 
(s1t�1; 
1t�2 � v0 � 
0t�2 � u � xt�2) 6= 0 for some 
hoi
e ofu and v0: ut



In the 
ase of the initial 
hoi
e of Bluetooth T2, we have t32 = 1: So, as wesaw earlier in se
tion 4.2, only two iteration approximations are needed. Theapproximation matri
es Xt in the 
ase of (6) wereXt�1 = �0 01 0� Xt = �0 11 0� :From Table 1 we see that 
(s1t�1; 
1t�2) = 58 : Hen
eT2 = �1 11 0�with t12 = 1 would have been still a weaker 
hoi
e than the 
urrent T2 in Blue-tooth. Next we show that a stronger 
hoi
e would have been possible.Theorem7. Let t32 = 0: Then at least three approximation rounds are needed.Proof. If t32 = 0; and T2 is invertible as assumed, then t12 = t42 = 1: Also T�12 =T2: LetD = �d1 d2d3 d4� :Then, as in (12) we have
t = (Xt � I �DT2)
t�1 � (DT2Xt�1 �DT2Xt�1 �DT2 � T2)
t�2;and further,
0t = (1� d3; e4t � 1� t22d3 � d4) � 
t�1� [d3e1t�1 � e3t�1(t22d3 � d4)� d3;d3e2t�1 � e4t�1(t22d3 � d4)� t22d3 � d4 � 1℄ � 
t�2� (d3; d4) � 
t�3Now, if d3 = 1; then we have 
1t�3 in the equation, so we need to do at least onemore approximation, hen
e two approximations is not enough. If d3 = 0; then
1t�1 is within the equation of 
0t and again more than two approximations areneeded. utAn example of a matrix T2, whi
h requires at least three approximations toget 
orrelation relations between the 
arry bits 
0t from di�erent time instan
es,is T2 = I . We 
onsider, for example, the 
orrelation between 
0t and 
0t�4. The
orrelation relation 
ould involve some xt variables at appropriate moments t,but in what follows we restri
t to the 
ase where the Hamming weight of u isalways zero.Corresponding to the equations (3) and (4) we now have
1t = s1t � 
1t�1 � 
1t�2
0t = s0t � 
0t�1 � 
0t�2:



Sin
e no xt�1 is involved, we have by Theorem 3 and with the aid of Table 1
(
0t ; 
0t�4) = 
(s0t ; 
0t�1 � 
0t�2 � 
0t�4)=Xw 
(s0t ; w � 
t�1)
(w � 
t�1; 
0t�1 � 
0t�2 � 
0t�4)= 
(s0t ; 
1t�1)
(
1t�1; 
0t�1 � 
0t�2 � 
0t�4):The se
ond equality follows from Theorem 3, and in the third we noted that theonly non-zero 
orrelation for 
(s0t ; w � 
t�1) is due to w = (1; 0): We 
ontinue inthe same manner to obtain:
(
0t ; 
0t�4)= �14
(s1t�1 � s0t�1; 
1t�2 � 
1t�3 � 
0t�3 � 
0t�4)= �14Xw 
(s1t�1 � s0t�1; w � 
t�2)
(w � 
t�2); 
1t�2 � 
1t�3 � 
0t�3 � 
0t�4)= �14(
(s1t�1 � s0t�1; 0)
(
1t�2 � 
1t�3 � 
0t�3 � 
0t�4; 0)+ 
(s1t�1 � s0t�1; 
1t�2 � 
0t�2)
(
0t�2; 
1t�3 � 
0t�3 � 
0t�4)): (15)From the two terms inside the bra
kets only the last one is non-zero. To see thiswe 
al
ulate the �rst term
(
1t�2 � 
1t�3 � 
0t�3 � 
0t�4; 0)= 
(s1t�2; 
0t�3 � 
1t�4 � 
0t�4)=Xw 
(s1t�2; w � 
t�3)
(w � 
t�3; 
0t�3 � 
1t�4 � 
0t�4)= 
(s1t�2; 
0t�3)
(
1t�4 � 
0t�4; 0) + 
(s1t�2; 
1t�3)
(
1t�3; 
0t�3 � 
1t�4 � 
0t�4):In the last equality the �rst term in the sum is zero, sin
e the memory bits onthe same moment are assumed to be statisti
ally independent. We 
ontinue withthe se
ond part of the sum:
(
0t�3 � 
1t�3; 
1t�4 � 
0t�4)= 
(s1t�3 � s0t�3; 
1t�5 � 
0t�5)=Xw 
(s1t�3 � s0t�3; w � 
t�4)
(w � 
t�4; 
1t�5 � 
0t�5)= �58(
(s1t�3 � s0t�3; 0)
(
1t�5 � 
0t�5; 0)+ 
(s1t�3 � s0t�3; 
1t�4 � 
0t�4)
(
1t�4 � 
0t�4; 
1t�5 � 
0t�5))= �58 � 14
(
1t�4 � 
0t�4; 
1t�5 � 
0t�5):These 
al
ulations are easy to generalize to any moment t� j; j = 0; 1; 2; : : : ; soa
tually we have
(
0t�3 � 
1t�3; 
1t�4 � 
0t�4)



= �� 532�k 
(
1t�3�k � 
0t�3�k; 
1t�4�k � 
0t�4�k):Hen
e, in�nitely many approximations should be done, and so the 
orrelation
an be regarded as zero:
(
0t�3 � 
1t�3; 
1t�4 � 
0t�4) = limk!1�� 532�k = 0:Let us now return to the equation 15. We have, that
(
0t ; 
0t�4)= �14 � 14
(
0t�2; 
1t�3 � 
0t�3 � 
0t�4)= � 116
(s0t�2; 
1t�3) = � 164 ;whi
h is signi�
antly smaller than 116 in equation 6. In this manner, the 
orrela-tion 
an be 
al
ulated for other weights of u; too. The resulting values degenerateto a single produ
t, as above, so that the produ
t of the 
orrelations is alwayssigni�
antly smaller than 116 :The Bluetooth 
ombination generator is a strengthened version of the basi
summation bit generator. By in
reasing the size of the memory the 
orrelationshave been redu
ed. We have shown that with the same memory size, by makinga small modi�
ation in the memory update fun
tion, it would be possible tofurther redu
e the 
orrelations.6 Ultimate Divide and ConquerIn this se
tion it is shown that divide and 
onquer atta
k be
omes possible ifthe length of the given keystream is longer than the period p of the shortest(say, the �rst) LFSR used in the key stream generation. Assume that there is arelation with a non-zero 
orrelation � between a linear 
ombination of the shiftregister output bits(u10x1t � : : :� un0xnt )� : : :� (u1dx1t�d � : : :� undxnt�d)and the key stream bitsw0zt � w1zt�1 � : : :� wdzt�d;over a number of d+ 1 time steps. Then it follows by Corollary 5 that we havea 
orrelation relation between a linear 
ombination of the keystream bitsw0(zt � zt+p)� w1(zt�1 � zt+p�1)� : : :� wd(zt�d � zt+p�d)and a linear 
ombination of the LFSR output bitsu20(x2t � x2t+p)� : : :� un0 (xnt � xnt+p)� : : :�u2d(x2t�d � x2t+p�d)� : : :� und (xnt�d � xnt+p�d);



where the output bits from the �rst (the shortest) shift register 
an
el, sin
ethey are equal.By Corollary 5, the strength of the 
orrelation over the period p is at least�2. Further, Corollary 5 shows how this lower bound 
an be improved. We statethis result in a form of a theorem as follows.Theorem8. For a 
ombination generator, assume that we have the following
orrelation
(w0zt � w1zt�1 � : : :� wdzt�d;(u10x1t � : : :� un0xnt )� : : :+ (u1dx1t�d � : : :� undxnt�d)) = � 6= 0:Let the lengths of the registers be L1; : : : ; Ln and the periods p1; : : : ; pn. Thengiven a keystream of length p1p2 � � � pk+ 1�4 +d one 
an do exhaustive sear
h overthe Lk+1 + : : :+ Ln bits whi
h form the initial 
ontents of n� k registers.If the LFSR registers have primitive feedba
k polynomials, then pi = 2Li�1.In most appli
ations n is even and the lengths Li are about the same. Then givena suÆ
iently strong 
orrelation between the input bits and the output bits of a
ombination generator, the 
omplexity to determine the 
omplete initial state oflength L is about O(2L=2). In other words, by generating key stream of lengthO(2L=2) one 
an su

essfully 
arry out exhaustive sear
h over L=2 bits of theinitial state.6.1 Periodi
 Correlations in BluetoothComputation of the 
orrelations for the Bluetooth E0 
ombiner is somewhat
ompli
ated due to multiple iteration. We make use of the relation 
0t + 
0t�1 +
0t�3 = 0, see (6). Applying Theorem 3 we get
(
0t � 
0t�1 � 
0t�3 � 
0t+p � 
0t+p�1 � 
0t+p�3; 0)= 
(s0t � s0t+p; 
0t�2 � 
1t�2 � 
0t�3plus
0t+p�2 � 
1t+p�2 + 
0t+p�3)= Xw;w02GF (22) 
(s0t � s0t+p; w � 
t�1 � w0 � 
t+p�1)�
(w � 
t�1 � w0 � 
t+p�1; 
0t�2 � 
1t�2 � 
0t�3 � 
0t+p�2 � 
1t+p�2 � 
0t+p�3):Now we apply Theorem 4 to the �rst 
orrelation in the produ
t and get
(s0t � s0t+p; w � 
t�1 � w0 � 
t+p�1)= Xu2GF (22) 
(s0t ; w � 
t�1 � u � x)
(s0t ; w0 � 
t�1 � u � x):Here x has one, two, or three 
oordinates, depending on whether p is the least
ommon period of of one, two, or three LFSRs, respe
tively.Let us now 
onsider the 
ase where p is the least 
ommon period of twoLFSRs. From Table 1 we see that these 
orrelations are nonzero if and only if



u = (0; 0) and w = w0 = (1; 0), or u = (1; 1) and w = w0 = (1; 0), or u = (0; 1)and w = w0 = (1; 1), or �nally, u = (1; 0) and w = w0 = (1; 1).The value w = w0 = (1; 1) leads to a longer 
orrelation relation extendingover at least two rounds, and hen
e are expe
ted be of less in amount, but stillnon-negative. Therefore, we dis
ard the 
orresponding terms, and get a lowerbound to the 
orrelation from the remaining terms with w = w0 = (1; 0) asfollows
(
0t � 
0t�1 � 
0t�3 � 
0t+p � 
0t+p�1 � 
0t+p�3; 0)� (
(s0t ; 
1t�1)2 + 
(s0t ; 
1t�1 � x1t � x2t )2)�
(
1t�1 � 
1t+p�1; 
0t�2 � 
1t�2 � 
0t�3 � 
0t+p�2 � 
1t+p�2 � 
0t+p�3)= (
(s0t ; 
1t�1)2 + 
(s0t ; 
1t�1 � x1t � x2t )2) � Xu2GF (22) 
(s1t�1; 
0t�2 � u � x)2= ((�1=4)2 + (1=4)2)(1=4)2 = 2�7;using the 
orrelation values given in Table 1.It should be stressed, however, that the presented ultimate divide and 
on-quer atta
k is of theoreti
al nature, and pra
ti
al only if the analyzer is givena

ess to key stream extending over periods of partial input. For example, theBluetooth E0 algorithm in its intended use generates only short segments ofkeystream to en
rypt ea
h plaintext frame starting from a new independentinitial state.7 Con
lusionsWe have seen how the 
orrelations in the Bluetooth 
ombiner 
ould be redu
edby making a small modi�
ation in its memory update fun
tion. This improve-ment is, however, rather theoreti
al in nature, but quite interesting as su
h. Themethods used in �nding this modi�
ation are spe
i�
 to Bluetooth, but 
ouldbe easily adapted to other similar 
ombiner generators. The te
hnique involvesa matrix des
ribing potential approximations based on known non-zero linear
orrelations over the non-linear part of the memory update fun
tion.We also showed how any signi�
ant 
orrelations over a 
ombiner 
an be usedto laun
h a divide and 
onquer atta
k against any 
ombiner generator providedthat suÆ
ient amount of the output keystream is given. If the input to the
ombiner is produ
ed using a 
ertain number of LFSRs with primitive feedba
kpolynomials, and the number of bits of the total initial state is L, then the
omplexity of this atta
k is upper bounded by O(2L=2). This will require theamount of same magnitude O(2L=2) of the output bits.We 
on
lude that if the e�e
tive key length of a 
ombiner generator is re-quired to be about the same magnitude as the size of the initial state, thenthe usage of the generator must be restri
ted in su
h a way that the length ofany keystream blo
k ever produ
ed by this generator never ex
eeds the shortestperiod of the input sequen
es.
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