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Abstract. In its intended usage the lengths of the key stream sequences
produced by the Bluetooth stream cipher Fy are strictly limited. In this
paper the importance of this limitation is proved by showing that the
Bluetooth stream cipher with 128 bit key can be broken in ©0(2%*) steps
given an output key stream segment of length ©(2%*). We also show how
the correlation properties of the Ey combiner can be improved by making
a small modification in the memory update function.

1 Introduction

Bluetooth™ is a standard for wireless connectivity specified by the Bluetooth™
Special Interest Group in [1]. The specification defines a stream cipher algorithm
Ey to be used for point-to-point encryption between the elements of a Bluetooth
network. The structure of Ej is a modification of a summation bit generator
with memory. In this paper we call it the Bluetooth combiner and analyze its
correlation properties. A few correlation theorems originating from [4] are stated
and exploited in the analysis. Also a new kind of divide-and-conquer attack is
introduced, which shows the importance of limiting the lengths of produced key
stream sequences.

As a consequence of these results, we propose a modification to the Bluetooth
combiner. This modification could be done at no extra cost, that is, it does
not increase the complexity of the algorithm. But, on the other hand, it would
improve the correlation properties of the Bluetooth combiner to some extent.
However, as long as no practical attack is known against the current version of
the Bluetooth combiner, the results given in this paper remain theoretical.

2 Correlation Theorems

2.1 Definitions and Notation

Let us introduce the notation to be used throughout this paper. We shall consider
the field GF(2™) as a linear space with a given fixed basis, and denote by z; an
n-dimensional vector in GF(2") as z; = (z},x?,...,z}). The inner product “-”
between two vectors w = (wy,ws,...,w,) and ¢ = (1, Z2,...,x,) of the space

GF(2™) is defined as

W T =wW1T DwWaTe D... D W,LTy,.



The linear function L, (z) is then
L,z)=u-z, u,z € GF(2").

We use the same definition of correlation between two Boolean functions as in
[3], where it is also referred to as “normalized correlation”.

Definition 1. Let f,g: GF(2") — GF(2) be Boolean functions. The correlation
between f and g is

c(f,9) =27"(#{z € GF(2")| f(z) = g(2)} — #{z € GF(2") | f(z) # g(2)}).

Sometimes the notation c;(f(z),g(z)) is used to emphasize the variable with
respect to which the correlation is to be calculated.

Finally, we recall Parseval’s theorem, which implies, in particular, that any
Boolean function is correlated to some linear functions.

Theorem 2. (Parseval’s Theorem)

> elf,Lw)? =1

weGF(2m)

2.2 Correlation Theorems

Iterated structures and combinations of transformations with common input
are frequently seen building blocks of cryptographic algorithms. The following
correlation theorems are useful in the analysis of propagation of correlations over
such structures. The proofs of the theorems can be found in [4].

Theorem 3. Given functions f : GF(2")xGF (2F) = GF(2) and g : GF(2™) —
GF(2%) we set

hz,y) = f(z,9(y)), = € GF(2"), y € GF(2™).
Then, for all w € GF(2"™), v € GF(2™),

Cz,y(h(xay)vu'IEBU'y): Z Cz,z(f(xaz)au'xEBw'Z)Cy(w'g(y)aU'y)'
weGF(2%)

We note that Theorem 3 can be considered as a generalization of Lemma 2 of
[3]- In the second correlation theorem a Boolean function, which is a sum of two
functions with partially common input, is considered.

Theorem4. Let f : GF(2") x GF(2¥) = GF(2) and g : GF(2¥) x GF(2™) —
GF(2) be Boolean functions. Then, for all u € GF(2"), w € GF(2™),
Cz,y,Z(f(xvy) & g(yv Z),’U, ‘THOw- Z)

= Y cy(f@y)u-z@v-y)e,..(9,2),v-ydw-2).
vEGF(2F)



If here the two functions f and g, and the two linear combinations v and w are
the same, we have the following corollary.

Corollary 5. Let f: GF(2") x GF(2%) — GF(2) be a Boolean function. Then,
for all uw € GF(2"),

Coge(f(@y) @ fEy)u-(@@8)) = D coy(f(@,y),u-z®v-y)°

vEGF(2F)

3 Combination Generators

In [3] an example of a summation bit generator with one bit of memory is
introduced and analyzed. The combiner of the Bluetooth key stream generator
can be considered as a variation of the thoroughly analyzed basic summation
bit generator, see [3] and [2]. A general class of combination generators with
memory giving the generators of [3] and [1] as special cases is defined as follows:

n
2zt = @ Tl @) (1)
i=1

¢t = f(we—1,C—1, .+, Ct—q)- (2)

Here z; = (z},...,z}') € GF(2") is the fresh input to the combiner at time ¢
and ¢} € GF(2) is the one-bit input from the memory, t = 0,1,2,.... The fresh
input is formed by n independent sequences z* = (zj,z%,...), i = 1,2,...,n,
which are typically generated by n linear feedback shift registers.

The memory constitutes of md bits arranged as a register of d consecutive
cells of m bits each. The memory is updated by computing a new m-bit ¢; =
(¢f,...,c™) using a function f from the fresh input and from the contents of the
memory saving the new c¢; in the memory and discarding c¢;—4. The output bit
z¢ is computed as an xor-sum of the fresh input x; and the previously computed
update c; of the memory.

Correlation attacks aimed at recovering the keys, which determine the gen-
eration of the fresh input, are based on correlations between a number of fresh
input bits and the output bits. For the type of generators defined by (1) such cor-
relations relations can be derived from correlations between consecutive “carry”
bits ¢f.

Such correlations are usually found by exhaustive search. This is the case
also with the Bluetooth combiner which is such a relatively small system that
this kind of “trial and error”-search is possible. In larger systems, however, some
more sophisticated means for finding these correlation equations should be used.
One such method is presented in [2].

4 Bluetooth Combiner

Bluetooth chips are small components capable of short range communication
with each other. The Bluetooth specification is given in [1]. In the security part



of [1] an encryption algorithm Ej is specified to be used for protection of the
confidentiality of the Bluetooth communication.

The algorithm Ej is of the form specified by (1)and (2). It consists of four
LFSRs of length 128 in total, a non-linear memory update function f, which is
a composition of a nonlinear f; and a linear mapping 7'.

The functions define the following recursive equations. The output key se-
quence 2¢, used to encipher the plaintext, is

1 2 3 4 0
2t =2y Dxy Dy Dxy Dy,

where (z}, 22,23, z}) is the fresh input at time ¢ produced by the four LFSRs.
Non-linearity is represented in the sequence s;, defined by the following formula,
where “+” means the ordinary integer sum:

1 2 3 4 1 0
Ty +xf+ 1y +x; +2¢; +c
5t+1=(5%+1,5?+1)=f1(l’t70t):{ L 5 L L tJ-

The function f; introduces the necessary non-linearity in the system, as integer
summation is non-linear in GF(2). The memory bits c; are then defined with
the aid of s; as

cer1 = (Cry1r 1) = T(se41, s ce—1) = To(seq1) © Ti(ce) @ To(ce1).

Here Ty, T} and T are linear transformations. Although non-linearity is crucial
for security, the choice of the linear mapping 7" has also certain influence to the
security of the Ey algorithm, as we will see later.

4.1 The Mapping T

The linear mapping 7" of Ey mix the old bits from the memory to the new
updated memory bits. The main focus of this work is to investigating its role in
the correlation properties. For the given f; we see (c.f. Table 1) that c(s?,c?_; &
u-xz) =0, for all u € GF(2). Hence these are not useful in correlation attacks.
On the other hand, c(s{,c;_; ®v°¢)_; ®u-z;) #0,7=0,1.

The mapping T' consists of three mappings, Ty, 77 and T3, as

ctr1 = T'(St+1,Ct,Ct—1)
=To(st41) @ Ti(ct) @ To(ce—1).

In matrix form, Ty = T7 = I, where [ is a 2 X 2 identity matrix. Further,

01
n=(1)

This means, the bits of ¢; = (c},c}) are

ct =8t Dy Dy, (3)
C? = S? (&) C?—l 5] C%_z 5] C?_z- (4)

With different choices of Ty, 77 and 75 the correlation properties of the system
become different. This shall be analyzed in section 5.



4.2 Correlation Analysis of the Bluetooth Combiner

The memory in Bluetooth has four bits, two bits for each two consecutive time
steps t and ¢t — 1. The function, which is used to form a new term z; of the keys
stream, is linear. The non-linearity is gained from the function f;, which is used
to calculate s;. As argued in [3], and in more general terms in [2], there remain
always some correlations in such a system. They shall be analyzed next.

The analysis exploits the correlations of the form

c(w - Sgp1,u- Tt DU cy)

where u € GF(2*) and v = (v!,v°) € GF(2?). Different choices of u and v
correspond to different linear combinations of z},z?,z3,z},cr and c?. In the

following Table 1 all the correlations are presented.

| vl | V0 |Weight of u| st1+1 | sgﬂ |st1+1 @ s?+1|

oy

0]0 0 0] 0 -3
1 3 0 0
2 0 0 3
3 0| 0 0
4 0 0 -3
01 0 3 0 0
1 0 0 3
2 0| 0 0
3 0 0 -1
4 110 0
1]o 0 > -3 0
1 0 0 3
2 -] 4 0
3 0| 0 0
4 : | -3 0
1|1 0 0 0 3
1 -3 | i 0
2 0| 0 0
3 2| -3 0
4 0 0 -3

Table 1. The correlations for st1+1, s?_,_l and stl_,_l &) 3?+1-

We note that, since the system is symmetric with respect to each x{, only the
Hamming weight of u is of importance. We also see that for s, ,, the correlation
is zero, if v; = 0. Next we present derivation of the strongest correlation relation
we found within the Bluetooth combiner.



Add ?_; to the both sides of (4) and rearrange the terms to get
GO B3 =5 B, D, B (5)
Next we use Theorem 3 to get

clefdc) @ 5,0)=c(s),c; B ;D] 3)

— 0 0 1 0
= E c(sg,w - c—1)e(w - i1, 5 B ey_y B Cyg),
weGF(22)

with v = 0, v = (0,0,1,1,1,0) and y = (sY_1,5;_;,¢) 5, ¢t 5,2 _5,ct_5). Now
from Table 1 we know, that the terms of the sum are zero for w = (0,1),w =
(1,1) and w = (0,0). Only the term with w = (1,0) remains. So, the correlation
equation is simplified to

c(c? @ c?_l &) c?_B, 0)
= c(sy,ci_1)e(ci 1, o B cy_o B ¢Y_g)

= C(ng 0%71)0(5%717 c?,z).

Here the last equation is obtained by moving back in time for one step in equation
(3), so that

1 _ 1 1 0
Ci_1 = C_1 D51 Dz

Using the values of Table 1, we finally get

1 1 1
C(C?@C?—l@cg—zvo):—z'z =1 (6)
After this we notice that
4 4 4

i i i 0 .m0 0
2t D21 D23 = @ z; @ @ T, B @ Ti_aDc Depq BCp_s.
1 1 1

We conclude by equation (6) that

4 4 4
, ) , 1
c(zt ® 241 @Zt—s,eafbi EB@ELI @@xi,g) TS (7
1 1 1

Since the output function of the Bluetooth combiner is XOR, it is maximum
order correlation immune. Hence divide and conquer attacks in their standard
form are not useful for determining the initial states of the LFSR’s. In section 6
it is shown how the achieved correlation relation can be utilized to determine a
theoretical upper-bound of the level of the security of the Bluetooth combiner.



5 Alternative Mappings for Mixing the Carry Bits

The goal of this section is to investigate, how the choice of the mapping T affects
the correlation properties of the Bluetooth combiner. In particular, we show that
the mapping T' can be selected in such a way that more than two linear approxi-
mations are needed when establishing a correlation relation between consecutive
carry bits.

Our method exploits a matrix which makes it possible to consider all possible
linear approximations of the function f; simultaneously.

Let Ty, T1 and T> be arbitrary 2 x 2 matrices:

_(to 13 _ (it _ (8
TO_(tgtg =g ) amd =54

Then
Ct = T()St D Tlctfl (5] TQCt,Q. (8)

We write Ty = A & B. Here the analyst can choose A and B in which way ever
is convenient, as long as their sum is 7;. The equation (8) can be written as

ct = Tosy ® Aci—1 ® Beg—1 @ Toci—o. (9)

We perform one iteration by inserting equation (8), applied for ¢ — 1 instead of
t, to the equation (9) and get

Ct = T()St D BCt,1 D AT()Stfl (5] ATlct,z (5] ATQCt,3 (&) TQCt,Q. (10)
Now, A may be chosen. Let D be a matrix of the form
_(dids
b= ( 0 d4> :
As the analyst wishes to minimize the number of correlation approximations, she
wants ¢ not to depend on c} 5. Therefore, she chooses AT, = D. If we assume

that 7% is invertible then such a choice is always possible. Inserting B =177 & A
into equation (10), as well as A = DT, ', we have

et = Tos®(T1®DTy Ve 1®(DTy *To)st—1®(DTy Ty ®T)ci—2®Dey—3.(11)

In order to take the correlation approximations into consideration, we write them
in matrix form as

st = Xic—1,
where
_ (e €
Xt - 3 .4 |>»
€t €

and s; and c;_; are taken as vertical vectors.



We see from Table 1, that if e} = 0 the correlations for s?
c(sP,elci Der-c) | Du-ay),

are always zero. Therefore we can presume e; = 1. The choice of u does not
affect the best non-zero values of the correlations. Therefore, we shall drop u - z;
and merely study the combinations of s} ; and c].

We approximate twice by inserting s; = X;c;—1 into equation (11), which
yields

Ct = (TOXtEBTl EBDTzil)thl@(DTzingthl @DTzilTl EBTQ)Ct,Q@Dthg.(].z)

In Bluetooth the generated key-sequence z; does not depend on ¢} but merely on
9. Hence, similarly as above in section 4.2, we aim at establishing a correlation
relation between zero components of ¢;.

Theorem 6. Let in the Bluetooth combiner generator Ty = Ty = I and T an
arbitrary invertible 2 x 2 matriz. If t3 = 1, then two correlation approzimations
suffices to establish a correlation between the input and output.

Proof. Substitute Tp = T1 = I and the general form of T» into (12) and obtain
the following correlation relation for c}:
c(t) =(1le d4,e;1 © 1D dytl) -ci 1
57 (d46%_1 57 d4t% 57 d4 57 1,d46?_1 57 d4t%6?_1 57 d4t% 57 t%) *Ct—2
@ d4C?73

To have only two approximations means that there must be neither c; ; nor
ct_, in the equation above, i.e.

1®dy=0 (13)
and

die; 1 ®daty D dy 1 =0. (14)
If dy = 0, then the other approximation will cancel out, so that equation (11)

transforms into the initial equation

¢ =8 B B, By
As this is not what the analyst wants, she chooses ds = 1 and equation (13) is
true. From (14) we then get that

6%71 69 t% = 0.

Now we check from Table 1 that c(sj_;,c? o ®u -zt 2) # 0 for some u. Hence
it is possible to use this correlation if ¢t = 0. Similarly, if ¢t} = 1, we see that
ej_; = 1 is possible, as c(sf_1,ci_5 ® 00 - ¢Y_5 B u - z4_2) # 0 for some choice of

w and o°. O



In the case of the initial choice of Bluetooth T%, we have t3 = 1. So, as we
saw earlier in section 4.2, only two iteration approximations are needed. The
approximation matrices X; in the case of (6) were

00 01
xa= (1) %= (1),

From Table 1 we see that c(s;_;,ci_,) = 2. Hence

11
== (1)
with #1 = 1 would have been still a weaker choice than the current T in Blue-
tooth. Next we show that a stronger choice would have been possible.

Theorem 7. Let t3 = 0. Then at least three approzimation rounds are needed.

Proof. If t3 = 0, and T} is invertible as assumed, then t} = t§ = 1. Also T; ' =
T2. Let

v-(14)
Then, as in (12) we have

¢t = (Xt @I @ DIo)ci—1 ® (D12 Xi—1 ® DXy 1 @ DT @ To)ce—o,
and further,

= (1@ds, et @1 2ds Bdy) o
@ [dse;_, ® ef_; (t3ds ® da) © ds,
dse;_ De; 1 (t3ds ®ds) B tods ®da D 1] oo
® (ds,dg) - ci—3

Now, if d3 = 1, then we have c}_5 in the equation, so we need to do at least one
more approximation, hence two approximations is not enough. If d3 = 0, then
ci_, is within the equation of ¢ and again more than two approximations are

needed. a

An example of a matrix T5, which requires at least three approximations to
get correlation relations between the carry bits ¢ from different time instances,
is Ty = I. We consider, for example, the correlation between ¢ and ¢_,. The
correlation relation could involve some x; variables at appropriate moments t,
but in what follows we restrict to the case where the Hamming weight of u is
always zero.

Corresponding to the equations (3) and (4) we now have
ct =5 @1 Dy

0_ 00 0
€t =S¢ DG Do



Since no z;_; is involved, we have by Theorem 3 and with the aid of Table 1
co(dycf_s) = (s, ) ® )y B _y)

= Z c(spyw - cpr)e(w - cro1,¢_y D}y B ¢)_y)
w

= C(S?,C%fl)C(C%fl,Cgfl S 6272 @ 6274)'

The second equality follows from Theorem 3, and in the third we noted that the
only non-zero correlation for c(s?,w - c;—1) is due to w = (1,0). We continue in
the same manner to obtain:

0 0
c(ctycr—a)

1
_ 1 0 1 1 0 0
= _Zc(stfl DS 1, 2DC 3D 53DC; y)

1
_ 1 0 1 1 0 0
=== (851 PSp_1,W-Ct2)c(W-Ct—2),C_o B C_3DC;_3DC;_4)

4

w

1
= —Z(c(s%,l 7 sgflv O)C(Cifz @ 0%73 ©® 0?73 ©® 6?74, 0)

+ c(s:ztlfl ® sgflv Cifz ® c?fz)c(cgfz, C:tlfs & 0?73 & 0274))- (15)
From the two terms inside the brackets only the last one is non-zero. To see this
we calculate the first term

c(cLz ® C:tlfs ® 0373 ® 6274, 0)
=c(st_2,6 3D D y)
= (st g wcis)e(w-cis,c) 3D 4 S y)

w

= c(sy_g,0)_3)c(ci_y ® ¢f_4,0) + c(si_g,ct_g)c(ci_g, s D ey B c)_y).

In the last equality the first term in the sum is zero, since the memory bits on
the same moment are assumed to be statistically independent. We continue with
the second part of the sum:
0 1 1 0
c(ci—3 ® Ci_3,C_4 D C;_y)

R 0o 1 0
= c(s4_3 D 8p_3,Ct_5 D Cy_5)

= Z c(s1_3 ® 8y_g,w - cr—a)c(w - -1, C4_5 D ;)

w
5
= —g(c(si—:z @ sy_3,0)c(c;_s ® ¢_5,0)
+ csp_3 © 87_3,C_a © G_a)c(Ci_y B G_yyci_5 D ¢_5))
5 1
= gele 4@y 5D g).
8 4
These calculations are easy to generalize to any moment ¢t — j, j = 0,1,2,..., so

actually we have

0 11 0
c(ci_3 ®cy_3,Ci_q DCy_y)



k
5
= (_3_2> clci s 1@ 5 1Cha B 4 p)

Hence, infinitely many approximations should be done, and so the correlation
can be regarded as zero:

k
. 5
(s 0 et gt yod ) = lim (~55) =0

o0

Let us now return to the equation 15. We have, that

0 0

c(ct, ct—a)
L1 1 0 0

1 ZC(Ct—% i3 ® C_3 D Cr_y)

1 1 1

= _1_66(8t—2vct—3) = "1’

which is significantly smaller than 11—6 in equation 6. In this manner, the correla-

tion can be calculated for other weights of u, too. The resulting values degenerate

to a single product, as above, so that the product of the correlations is always

significantly smaller than %.

The Bluetooth combination generator is a strengthened version of the basic
summation bit generator. By increasing the size of the memory the correlations
have been reduced. We have shown that with the same memory size, by making
a small modification in the memory update function, it would be possible to

further reduce the correlations.

6 Ultimate Divide and Conquer

In this section it is shown that divide and conquer attack becomes possible if
the length of the given keystream is longer than the period p of the shortest
(say, the first) LFSR used in the key stream generation. Assume that there is a
relation with a non-zero correlation p between a linear combination of the shift
register output bits

(ugr; @ ... 0 ulzM) ®...® (uhzt ,®...®ulz? )
and the key stream bits
wo2t D wize—1 D ... D wgzt—d,

over a number of d + 1 time steps. Then it follows by Corollary 5 that we have
a correlation relation between a linear combination of the keystream bits

wo (2t ® Ze4p) B W1 (2¢—1 D Zegp—1) D - .. B Wq(2t—a B Zt4p—a)
and a linear combination of the LFSR output bits
ug(z; ®27,,) ... Duf (el dap,) ...

Dug(ef_g O TEyp ) & ... O ug(zi_ g 274y 4),



where the output bits from the first (the shortest) shift register cancel, since
they are equal.

By Corollary 5, the strength of the correlation over the period p is at least
p?. Further, Corollary 5 shows how this lower bound can be improved. We state
this result in a form of a theorem as follows.

Theorem 8. For a combination generator, assume that we have the following
correlation

C(’I.U()Zt D wize—1 D ... D wgri—qg,
(upzt ® ... @ ule!) ® ... + (uiz; 4 ® ... ®ulzl ;) =p #0.

Let the lengths of the registers be Lq,...,L, and the periods pi,...,pn. Then
given a keystream of length pips - - - by + - +d one can do ezhaustive search over
the Ly11 + ...+ L, bits which form the initial contents of n — k registers.

If the LFSR registers have primitive feedback polynomials, then p; = 2% —1.
In most applications n is even and the lengths L; are about the same. Then given
a sufficiently strong correlation between the input bits and the output bits of a
combination generator, the complexity to determine the complete initial state of
length L is about O(ZL/ 2). In other words, by generating key stream of length
O(2F/?) one can successfully carry out exhaustive search over L/2 bits of the
initial state.

6.1 Periodic Correlations in Bluetooth

Computation of the correlations for the Bluetooth Fy combiner is somewhat
complicated due to multiple iteration. We make use of the relation ¢ + ¢¢_; +
¢) 5 =0, see (6). Applying Theorem 3 we get

(o) 1B 3B, Dy 1 DCyp3,0)

(OO 0 1 0 0 1 0
= (st © SpypCt2 Do D Cy_gpluscyy, 5 ® Coppp o+ Copp3)
0 0 i
= Z (st © Spypy W Ct—1 D W' - Ceip1)
w,w' EGF(22)
/ 0 1 0 0 1 0
e ci—1 ®W + Crap-1,C_2 Do B Ci_3 B Cryp 2 DChypn®Chyps)
Now we apply Theorem 4 to the first correlation in the product and get
0 0 !
c(s; D 844 pyW - Ct—1 W - Crip-1)
= Z c(sd,w-ci 1 @u-x)e(sd,w' -ci 1 ®u-x).
uEGF(22)

Here x has one, two, or three coordinates, depending on whether p is the least
common period of of one, two, or three LFSRs, respectively.

Let us now consider the case where p is the least common period of two
LFSRs. From Table 1 we see that these correlations are nonzero if and only if



u = (0,0) and w = w' = (1,0), or u = (1,1) and w = w' = (1,0), or u = (0,1)
and w = w' = (1,1), or finally, v = (1,0) and w = w' = (1, 1).

The value w = w' = (1,1) leads to a longer correlation relation extending
over at least two rounds, and hence are expected be of less in amount, but still
non-negative. Therefore, we discard the corresponding terms, and get a lower
bound to the correlation from the remaining terms with w = w' = (1,0) as
follows

o @) ®c) B@Ct+p@ct+p 1®Ct+p 3,0)
((stvct 1) +C(3tact 169%@%)2)
e(cy_ IEBCH-p 1 G By By 3@9Ct+p 2®Ct+p 2@9Ct+p 3)

= (c(sgyci-1) +e(sy ey @ ; © 2)°) - Z c(si_1,¢f—p ®u-z)?
uEGF(22)

= ((=1/9 + (1/9*)(1/4)* =27,

using the correlation values given in Table 1.

It should be stressed, however, that the presented ultimate divide and con-
quer attack is of theoretical nature, and practical only if the analyzer is given
access to key stream extending over periods of partial input. For example, the
Bluetooth Ej algorithm in its intended use generates only short segments of
keystream to encrypt each plaintext frame starting from a new independent
initial state.

7 Conclusions

We have seen how the correlations in the Bluetooth combiner could be reduced
by making a small modification in its memory update function. This improve-
ment is, however, rather theoretical in nature, but quite interesting as such. The
methods used in finding this modification are specific to Bluetooth, but could
be easily adapted to other similar combiner generators. The technique involves
a matrix describing potential approximations based on known non-zero linear
correlations over the non-linear part of the memory update function.

We also showed how any significant correlations over a combiner can be used
to launch a divide and conquer attack against any combiner generator provided
that sufficient amount of the output keystream is given. If the input to the
combiner is produced using a certain number of LFSRs with primitive feedback
polynomials, and the number of bits of the total initial state is L, then the
complexity of this attack is upper bounded by O(2%/2). This will require the
amount of same magnitude O(2%/2) of the output bits.

We conclude that if the effective key length of a combiner generator is re-
quired to be about the same magnitude as the size of the initial state, then
the usage of the generator must be restricted in such a way that the length of
any keystream block ever produced by this generator never exceeds the shortest
period of the input sequences.
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