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Abstract
This paper describes the implementation of an attack on
the Bluetooth security mechanism. Specifically, we de-
scribe a passive attack, in which an attacker can find the
PIN used during the pairing process. We then describe
the cracking speed we can achieve through three opti-
mizations methods. Our fastest optimization employs an
algebraic representation of a central cryptographic prim-
itive (SAFER+) used in Bluetooth. Our results show that
a 4-digit PIN can be cracked in less than 0.3 sec on an
old Pentium III 450MHz computer, and in 0.06 sec on a
Pentium IV 3Ghz HT computer.

1 Introduction

1.1 Background

Bluetooth, a technology used for short range fast com-
munications, has quickly spread worldwide. Bluetooth
technology is used in a large set of wired and wireless de-
vices: mobile phones, PDA’s, desktop and mobile PC’s,
printers, digital cameras, and dozens of other devices.
Being wireless, Bluetooth is potentially vulnerable to
many attacks. It is very difficult to avoid Bluetooth sig-
nals from leaking outside the desired boundaries. The
possible damage of a successful wireless attack starts
with the ability to eavesdrop on the data transferred dur-
ing the communication of two devices, and ends with the
ability to fully impersonate other devices.
The Bluetooth technology has a significant security
component, which includes key management, authenti-
cation and secrecy. However, the security of the whole
system relies on the user’s choice of a secret Personal
Identification Number (PIN) - which is often much too
short. Moreover, the Bluetooth designers invented sev-
eral new cryptographic primitives, which were incorpo-
rated into the system. Cryptographers consider fielding
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new primitives to be risky, because new cryptography
is less tested and may contain hidden flaws. Further-
more, Bluetooth is designed for short-range communi-
cation (nominal range of about 10m). This short-range is
perceived as a security feature, since an attacker is sup-
posed to be quite near the attack target - but recent his-
tory with IEEE 802.11 has shown that effective range-
extenders can be built very cheaply [Reh03]. Finally, as
Bluetooth gains popularity on PDAs and laptops, the in-
formation that lures attackers grows from cell-phone ad-
dress books to valuable corporate data.

1.2 Related work

A number of crypt-analytical results regarding Bluetooth
[HN99, FL01, Flu02, Kra02, Arm02, LV04, LW05] have
appeared over the last five years. Most of the work has
focused on the lowest level cipher, called E0. This is a
completely new cipher, designed specifically for Blue-
tooth. The current state of the art is that no practical at-
tacks, with current technology, have surfaced, yet. How-
ever, it is already clear that the security of the cipher is
much less than claimed: although E0 uses 128-bit keys,
its effective security is no more than an 84-bit system
(approximately). If E0 were to be used outside of the
Bluetooth system, and allowed to produce a stream of
several million bits, then [LV04] shows E0 to be effec-
tively a 39-bit system - which would make it much too
weak for use. These are worrisome, if not yet fatal, de-
velopments.
As for a security analysis of the system as a whole,

much less has been done. The most significant work
so far is [JW01], which identified some weaknesses.
Over the last two years some hacker tools are start-
ing to emerge (with colorful names such as “blues-
narfing” [Lau03], “bluejacking” [Blu04], and “redfang”
[Whi03]).
The work closest to ours was recently done by

O. Whitehouse, independently, and announced at the
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Term Explanation
PIN Personal Identification Number.

The PIN code is 1-8 bytes long (8-
128 bits). However, most devices
use PIN sizes of 4 decimal digits.

BD ADDR Each Bluetooth device has a 48 bit
unique address that is called the
Bluetooth Device Address.

Pairing The process in which two (or more)
Bluetooth devices hook up to cre-
ate a shared secret value called
Kinit. The Kinit forms the ba-
sis for all future Bluetooth negoti-
ations between these two devices.

Table 1: List of terms

CanSecWest ’04 conference [Whi04]. His work contains
a survey of many aspects of Bluetooth security. How-
ever, as far as PIN cracking goes, the author only de-
scribes the attack framework, with rough time estimates.
Precise technical details of the attack (beyond the presen-
tation slides) have not been published. Unlike our work,
the author apparently did not implement a PIN-cracking
program. Thus we believe that our implementation, mea-
surements, and our optimization methods, are all novel.

1.3 Contribution

In this paper we introduce a passive attack, in which an
attacker can find the PIN used during the Bluetooth pair-
ing process. We then describe implementations of this
attack, using three optimizations methods. For this pur-
pose we wrote a special-purpose Bluetooth security suite
from scratch. Our fastest optimization employs an alge-
braic representation of a central cryptographic primitive
(SAFER+) used in Bluetooth. Our results show that a
4-digit PIN can be cracked in less than 0.3 sec on an
old Pentium III 450MHz computer, and in 0.06 sec on
a Pentium IV 3Ghz HT computer. We then sketch an
additional attack that can force the Bluetooth devices to
repeat the pairing process and make them vulnerable to
the first attack.

Organization: In Section 2 we give an overview of
Bluetooth security, focusing on the Bluetooth pairing and
authentication mechanism. Section 3 describes the pas-
sive attack, in which an attacker can find the PIN used
during the pairing process. Section 4 contains a descrip-
tion of five versions implementing such an attack, with
their respective performance figures. Section 5 sketches
the additional attack, which can force two devices to re-
peat the pairing process. Section 6 presents countermea-
sures that will reduce the probability of being subjected
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Figure 1: Generation ofKinit using E22

to both attacks and the vulnerability to these attacks, and
we conclude our work in Section 7.

2 Overview of Bluetooth Security

A detailed specification of Bluetooth security mecha-
nisms can be found in part H of Vol 2 of [Blu03]. A list
of terms used repeatedly in this paper is given in Table 1.
This papers deals with the mechanisms used in Blue-

tooth Security Mode 3: The Link-level security mode.
In this mode, a Bluetooth device will initiate security
measures before a channel is established. This is a built-
in mechanism, that is used regardless of the application
layer security that may also be used. In security mode
3 terminology, establishing a channel between two Blue-
tooth devices is called pairing or bonding.

2.1 The Bluetooth pairing & authentica-
tion process

The Bluetooth initialization procedures consists of 3 or 4
steps:

1. Creation of an initialization key (Kinit).

2. Creation of a link key (Kab).

3. Authentication.

After the 3 pairing steps are completed, the devices can
derive an encryption key to hide all future communica-
tion in an optional fourth step.
Before the pairing process can begin, the PIN code

must be entered into both Bluetooth devices. Note that in
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Figure 2: Generation ofKab using E21

some devices (like wireless earphones) the PIN is fixed
and cannot be changed. In such cases, the fixed PIN is
entered into the peer device. If two devices have a fixed
PIN, they cannot be paired, and therefore cannot commu-
nicate. In the following sections we go into the details of
the steps of the pairing process.

2.1.1 Creation of Kinit

TheKinit key is created using the E22 algorithm, whose
inputs are:

1. a BD ADDR.

2. the PIN code and its length.

3. a 128 bit random number IN RAND.

This algorithm outputs a 128 bit word, which is referred
to as the initialization key (Kinit).
Figure 1 describes how Kinit is generated using E22.
Note that the PIN code is available at both Bluetooth de-
vices, and the 128 bit IN RAND is transmitted in plain-
text. As for the BD ADDR: if one of the devices has a
fixed PIN, they use the BD ADDR of the peer device. If
both have a variable PIN, they use the PIN of the slave
device that receives the IN RAND. In Figure 1, if both

devices have a variable PIN, BD ADDRB shall be used.
The Bluetooth device address can be obtained via an in-
quiry routine by a device. This is usually done before
connection establishment begins. A detailed explanation
of the inner design ofE22 can be found in Appendix B.1.
This initialization key (Kinit) is used only during the

pairing process. Upon the creation of the link key (Kab),
theKinit key is discarded.

2.1.2 Creation of Kab

After creating the initialization key, the devices create
the link key Kab. The devices use the initialization key
to exchange two new 128 bit random words, known as
LK RANDA and LK RANDB . Each device selects a ran-
dom 128 bit word and sends it to the other device af-
ter bitwise xoring it with Kinit. Since both devices
know Kinit, each device now holds both random num-
bers LK RANDA and LK RANDB . Using the E21 algo-
rithm, both devices create the link key Kab. The inputs
of E21 algorithm are:

1. a BD ADDR.

2. The 128 bit random number LK RAND.
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Note that E21 is used twice is each device, with two sets
of inputs. Figure 2 describes how the link key Kab is
created. A detailed explanation of the inner design of
E21 can be found in Appendix B.2.

2.1.3 Mutual authentication

Upon creation of the link key Kab, mutual authentica-
tion is performed. This process is based on a challenge-
response scheme. One of the devices, the verifier, ran-
domizes and sends (in plaintext) a 128 bit word called
AU RANDA. The other device, the claimant, calculates
a 32 bit word called SRES using an algorithm E1. The
claimant sends the 32 bit SRESword as a reply to the ver-
ifier, who verifies (by performing the same calculations)
the response word. If the response word is successful,
the verifier and the claimant change roles and repeat the
entire process. Figure 3 describes the process of mutual
authentication. The inputs to E1 are:

1. The random word AU RANDA.

2. The link keyKab.

3. Its own Bluetooth device address (BD ADDRB).

A detailed explanation of the inner design of E1 can be
found in Appendix B.3.
Note that as a side effect of the authentication process,

a 96 bit word called ACO is calculated by both peers.
This word is optionally used during the creation of the
encryption key. The creation of this encryption key ex-
ceeds our primary discussion and shall not be described
in this paper.

2.2 Bluetooth cryptographic primitives

As we described above, the Bluetooth pairing and au-
thentication process uses three algorithms: E22,E21,E1.
All of these algorithms are based on the SAFER+ cipher
[MKK98], with some modifications. Here we describe
features of SAFER+ that are relevant to our attack.

2.2.1 Description of SAFER+

SAFER+ is a block cipher [MKK98] with a block size
of 128 bits and three different key lengths: 128, 192
and 256 bits. Bluetooth uses SAFER+ with 128 bit key
length. In this mode, SAFER+ consists of:

1. KSA - A key scheduling algorithm that produces 17
different 128-bit subkeys.

2. 8 identical rounds.

3. An output transformation - which is implemented
as a xor between the output of the last round and the
last subkey.
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Figure 3: Mutual authentication process using E1

Figure 4 describes the inner design of SAFER+, as it is
used in Bluetooth.
The key scheduling algorithm (KSA)
The key scheduling algorithm used in SAFER+ pro-

duces 17 different 128-bit subkeys, denoted K1 to K17.
Each SAFER+ round uses 2 subkeys, and the last key is
used in the SAFER+ output transformation. The impor-
tant details for our discussion are that in each step of the
KSA, each byte is cyclic-rotated left by 3 bit positions,
and 16 bytes (out of 17) are selected for the output sub-
key. In addition, a 128 bit bias vector, different in each
step, is added to the selected output bytes. The entire
process of key scheduling is detailed in Appendix A.1.
The SAFER+ Round
As depicted in Figure 4, SAFER+ consists of 8 identi-

cal rounds. Each round calculates a 128 bit word out of
two subkeys and a 128 bit input word from the previous
round. The central components of the SAFER+ round
are the 2-2 Pseudo Hadamard Transform (PHT), the Ar-
menian Shuffles, and the substitution boxes denoted “e”
and “l”.
The Pseudo Hadamard Transform takes two input

bytes and produces two output bytes, as follows:

PHT [a, b] = [(2a + b) mod 256, (a + b) mod 256]

The Armenian Shuffle is a permutation of 16 bytes.
See Figure 5 for the Armenian shuffle order.
The substitution boxes “e” and “l” are non-linear, both
replace an input byte with an output byte. Their imple-
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Figure 4: Inner design of SAFER+

mentation is given in equations (1) and (2):

e(x) = (45x (mod 257)) mod 256 (1)

l(x) = y s.t. e(y) = x (2)

Figure 5 describes the structure of one SAFER+
round.

3 Bluetooth PIN Cracking

3.1 The Basic Attack

Assume that the attacker eavesdropped on an entire pair-
ing and authentication process, and saved all the mes-
sages (see Table 2). The attacker can now use a brute
force algorithm to find the PIN used. The attacker
enumerates all possible values of the PIN. Knowing
IN RAND and the BD ADDR, the attacker runsE22 with
those inputs and the guessed PIN, and finds a hypothesis
for Kinit. The attacker can now use this hypothesis of
the initialization key, to decode messages 2 and 3. Mes-
sages 2 and 3 contain enough information to perform the
calculation of the link key Kab, giving the attacker a hy-
pothesis of Kab. The attacker now uses the data in the
last 4 messages to test the hypothesis: UsingKab and the
transmitted AU RANDA (message 4), the attacker calcu-
lates SRES and compares it to the data of message 5. If
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Figure 5: Structure of one SAFER+ round

# Src Dst Data Length Notes
1 A B IN RAND 128 bit plaintext
2 A B LK RANDA 128 bit XORed

with
Kinit

3 B A LK RANDB 128 bit XORed
with
Kinit

4 A B AU RANDA 128 bit plaintext
5 B A SRES 32 bit plaintext
6 B A AU RANDB 128 bit plaintext
7 A B SRES 32 bit plaintext

Table 2: List of messages sent during the pairing and au-
thentication process. “A” and “B” denote the two Blue-
tooth devices.

necessary, the attacker can use the value of messages 6
and 7 to re-verify the hypothesis Kab until the correct
PIN is found. Figure 6 describes the entire process of
PIN cracking.
Note that the attack, as described, is only fully suc-

cessful against PIN values of under 64 bits. If the PIN is
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longer, then with high probability there will be multiple
PIN candidates, since the two SRES values only provide
64 bits of data to test against. A 64 bit PIN is equivalent
to a 19 decimal digits PIN.

4 Implementation

This section describes our implementation of the PIN
cracking attack, through several optimization versions.
We implemented all the versions in C with some embed-
ded 80x86 assembly instructions. We used the Microsoft
VC++ compiler on a PC running Microsoft Windows 98.

4.1 The Baseline

Before writing optimized versions of the code, we es-
tablished two baseline implementations for comparison
purposes, as follows.

4.1.1 The “as-is” version

This version is a non-optimized implementation of the
attack, using C code only. The bias vectors (see Sec-
tion 2.2.1) which are used during the SAFER+ key
scheduling algorithm are calculated offline, and the sub-
stitution boxes e and l are implemented using two pre-
calculated look-up tables.

4.1.2 The basic version

This version is identical to the “as-is” version, but with
compiler optimizations to yield maximal speed1.

4.2 Improved KSA & Expansion

Our first optimization technique focuses on the SAFER+
Key Scheduling Algorithm (KSA). We identified two ef-
fective optimizations in the KSA:

1. Caching the calculation result of the expansion
operation in the E21 and E22 algorithms on the
BD ADDR of both peers. Since the input of
BD ADDR to E21 and E22 is nearly static (only
two values of BD ADDR are used during the PIN
cracking attack), it is possible to perform the cal-
culation of Expansion(BD ADDR,6) (see Appen-
dices B.1 and B.2) only once, and save the result
for later use.

2. Enhancements of the implementation of the key
scheduling algorithm. We found that the imple-
mentation of the byte-rotate operation (recall Sec-
tion 2.2.1) using C code is expensive. Instead we
used inline assembly code which employed the ROL
instruction. Furthermore, we found that the mod-
ulo 17 operation used to extract specific bytes from
a batch of 17 bytes during the key scheduling al-
gorithm is very expensive. Instead, we used a pre-
calculated look-up table.

4.3 PHT as lookup-table

In this version we used a large look-up table to imple-
ment the Pseudo Hadamard Transformation (PHT) oper-
ation, which is used 32 times during a single SAFER+
round. The look-up table is 65,536 entries long, since
the transformation receives two bytes (28) and replaces
them. The routine which implements the use of such a
look-up table was written in pure assembly code. The
look-up table was pre-calculated offline.

1Compile option /O2 yields maximal speed.
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4.4 Algebraic Manipulation

Our most interesting and most effective optimization is
the algebraic manipulation of the SAFER+ round. A key
observation is that almost the entire SAFER+ round2 can
be implemented as a 16x16 matrix multiplying the vec-
tor of 16 input bytes (all operations modulo 256). This is
possible since the operations used in the Armenian shuf-
fles and Pseudo Hadamard Transformations are linear.
By tracing back through the Shuffles and PHT boxes we
computed the 16x16 matrix coefficients as follows:


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Our goal is to implement the multiplication (a 16 co-
efficients vector by a 16x16 matrix) faster than the tradi-
tional implementation of the Armenian shuffles and the
PHT. A naive implementation of multiplying the vec-
tor with each column of the matrix would have taken
16 multiplication operations and 16 add operations for
each column: 32 operations for each column, yielding
512 operations for the entire matrix (plus load and store
operations). Such an implementation is slower than the
traditional one: We found that each PHT box consists of
7 operations, the Armenian shuffle consist of 32 opera-
tions. This yields 320 operations for the traditional im-
plementation (32 PHT boxes and 3 Armenian shuffles).
However, a careful examination of the above matrix

shows that we can do much better. A much faster imple-
mentation is possible because the matrix has a great deal
of structure, and because all the coefficients are powers
of 2.
Observe that every pair of consecutive columns, start-
ing with the two leftmost columns, are identical in half of
their coefficients. All other coefficients in the left column
are equal to twice the value of the coefficients in the right
column. This structure is very useful, since the result
of multiplication of half the column can be used in both

2Except the lookup tables e and l and the key addition steps.

PIN Length (digits) Time (seconds)
4 0.063
5 0.75
6 7.609
7 76.127

Table 3: Summary of results obtained running the last
version on a Pentium IV 3Ghz HT computer.

columns. Furthermore, the product of the other coeffi-
cients can be calculated once and used for both columns,
since they differ only by a factor of 2.
The fact that the coefficients are all powers of 2 is also

helpful, since instead of using multiplication operations,
the calculation is done using a shift left operation.
The next pseudo code depicts the calculation proce-

dure for two columns. Note the saving in shift oper-
ations, done by arranging the add operation in an ap-
propriate manner. The input vector is denoted by X =
(x0, ..., x15), and we show the calculation of the outputs
y0 and y1:

h1 = x1 + x2 + x3 + x6 + x7 +

2(x0 + x5 + 2(x4))

h2 = x8 + x9 + x11 +

2(x10 + x12 + x13 + 2(x15 + 2(x14)))

y1 = h1 + h2

y0 = y1 + h2

How fast is the new implementation?
This implementation consists of 5 shift left operations,

16 add operations, 2 load operations and 2 store opera-
tions. This yields 25 operations per 2 columns, 200 op-
erations for the entire matrix multiplication: 30% fewer
than needed in the normal implementation.

4.5 Results

This subsection presents the cracking time of the five ver-
sions. All the versions were run on an old Pentium III
450MHz Personal Computer. For each version we tried
several PIN sizes, ranging from 4 to 7 decimal digits.
Figure 7 compares the results obtained from all five

versions. The Y axis denotes the running time in seconds
(logarithmic scale), and the X axis denotes the number of
decimal digits the PIN contains.
The final version improves the cracking speed by a

factor of 10, and brings the time to crack a 4-digit PIN
down to 0.27 sec. To gain some insight on how the at-
tack improves with stronger hardware, we also ran our
best attack version on a Pentium IV 3Ghz HT. On this
computer we were able to crack a 4-digit PIN in 63 msec
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(see Table 3) – 4 time faster than on the Pentium III. This
makes the attack near-real-time.

5 The Re-Pairing attack

5.1 Background and motivation

This section describes an additional attack on Bluetooth
devices that is useful when used in conjunction with the
primary attack described in Section 3. Recall that the pri-
mary attack is only applicable if the attacker has eaves-
dropped on the entire process of pairing and authentica-
tion. This is a major limitation since the pairing process
is rarely repeated. Once the link keyKab is created, each
Bluetooth device stores it for possible future communi-
cation with the peer device. If at a later point in time the
device initiates communication with the same peer - the
stored link key is used and the pairing process is skipped.
Our second attack exploits the connection establishment
protocol to force the communicating devices to repeat
the pairing process. This allows the attacker to record all
the messages and crack the PIN using the primary attack
described in this paper.

5.2 Attack details

Assume that two Bluetooth devices that have already
been paired before now intend to establish communica-
tion again. This means that they don’t need to create the
link key Kab again, since they have already created and
stored it before. They proceed directly to the Authentica-
tion phase (Recall Figure 3). We describe three different
methods that can be used to force the devices to repeat
the pairing process. The efficiency of each method de-
pends on the implementation of the Bluetooth core in the
device under attack. These methods appear in order of
efficiency:

1. Since the devices skipped the pairing process and
proceeded directly to the Authentication phase, the
master device sends the slave an AU RAND mes-
sage, and expects the SRES message in return. Note
that Bluetooth specifications allow a Bluetooth de-
vice to forget a link key. In such a case, the slave
sends an LMP not accepted message in return, to
let the master know it has forgotten the link key
(see subsection 4.2.1.2 “Claimant has no link key”
of Part C of Vol 2 of [Blu03]). Therefore, after the
master device has sent the AU RAND message to
the slave, the attacker injects a LMP not accepted
message toward the master. The master will be con-
vinced that the slave has lost the link key and pairing
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will be restarted (see subsection 5.1 “AUTHENTI-
CATION” of Part C of Vol 3 of [Blu03]). Restart-
ing the pairing procedure causes the master to dis-
card the link key (see subsection 6.5 “BONDING”
of Part C of Vol 3 of [Blu03]). This assures pairing
must be done before devices can authenticate again.

2. At the beginning of the Authentication phase, the
master device is supposed to send the AU RAND to
the slave. If before doing so, the attacker injects a
IN RAND message toward the slave, the slave de-
vice will be convinced the master has lost the link
key and pairing is restarted. This will cause the con-
nection establishment to restart.

3. During the Authentication phase, the master de-
vice sends the slave an AU RAND message, and ex-
pects a SRES message in return. If, after the mas-
ter has sent the AU RAND message, an attacker in-
jects a random SRES message toward the master,
this will cause the Authentication phase to restart,
and repeated attempts will be made (see subsection
5.1 “REPEATED ATTEMPTS” of Part H of Vol 2
of [Blu03]). At some point, after a certain number
of failed authentication attempts, the master device
is expected to declare that the authentication pro-
cedure has failed (implementation dependent) and
initiate pairing (see subsection 5.1 “AUTHENTICA-
TION” of Part C of Vol 3 of [Blu03]).

The three methods described above cause one of the
devices to discard its link key. This assures the pairing
process will occur during the next connection establish-
ment, so the attacker will be able to eavesdrop on the en-
tire process, and use the method described in Section 3
to crack the PIN.
In order to make the attack “online”, the attacker can
save all the messages transferred between the devices af-
ter the pairing is complete. After breaking the PIN (0.06-
0.3 sec for a 4 digit PIN), the attacker can decode the
saved messages, and continue to eavesdrop and decode
the communication on the fly. Since Bluetooth supports
a bit rate of 1 Megabit per second (see Part A of Vol 1
of [Blu03]), a 40KB buffer is more than enough for the
common case of a 4 digit PIN.
Notes:

1. The Bluetooth specification does allow devices to
forget link keys and to require repeating the pairing
process. This fact makes the re-pairing attack appli-
cable.

2. Re-Pairing is an active attack, that requires the at-
tacker to inject a specific message at a precise point
in the protocol. This most likely needs a cus-
tom Bluetooth device since off-the-shelf compo-
nents will be unable to support such behavior.

3. If the slave device verifies that the message it
receives is from the correct BD ADDR, then the
attack requires the injected message to have its
source BD ADDR “spoofed” - again requiring cus-
tom hardware.

4. If the attack is successful, the Bluetooth user will
need to enter the PIN again - so a suspicious user
may realize that his Bluetooth device is under attack
and refuse to enter the PIN.

6 Countermeasures

This section details the countermeasures one should con-
sider when using a Bluetooth device. These countermea-
sures will reduce the probability of being subjected to
both attacks and the vulnerability to these attacks.
Since Bluetooth is a wireless technology, it is very dif-

ficult to avoid Bluetooth signals from leaking outside the
desired boundaries. Therefore, one should follow the rec-
ommendation in the Bluetooth standard and refrain from
entering the PIN into the Bluetooth device for pairing
as much as possible. This reduces the risk of an attacker
eavesdropping on the pairing process and finding the PIN
used.
Most Bluetooth devices save the link key (Kab) in

non-volatile memory for future use. This way, when
the same Bluetooth devices wish to communicate again,
they use the stored link key. However, there is another
mode of work, which requires entering the PIN into both
devices every time they wish to communicate, even if
they have already been paired before. This mode gives a
false sense of security! Starting the pairing process every
time increases the probability of an attacker eavesdrop-
ping on the messages transferred. We suggest not to use
this mode of work.
Finally, the PIN length ranges from 8 to 128 bits. Most

manufacturers use a 4 digit PIN and supply it with the
device. Obviously, customers should demand the ability
to use longer PINs.

7 Conclusion

This paper describes the implementation of an attack on
the Bluetooth security mechanism. Our results show that
using algebraic optimizations, the most common Blue-
tooth PIN can be cracked within less than 0.06-0.3 sec-
onds. If two Bluetooth devices perform pairing in a hos-
tile area, they are vulnerable to this attack.
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A Detailed specifications of SAFER+

A.1 SAFER+ Key Scheduling Algorithm

In continuation to section 2.2.1, the key scheduling algo-
rithm uses 16 constant Bias vectors. The Bias vectors,
denoted B2 to B17, are derived from the following equa-
tion:

Bc[i] = ((45(4517c+i+1 mod 257) mod 257) mod 256),

for i = 0, .., 15.

One bias vector is used in each step, except for the first
step. Note that the first step doesn’t contain the cyclic
rotate. Figure 8 describes the entire process of the key
scheduling algorithm in SAFER+.

A.2 SAFER+ modified version

Besides using SAFER+ as is, Bluetooth uses a slightly
modified version of SAFER+. This modified version is
identical to the original SAFER+ implementation, only
it also combines the input of SAFER+’s round 1 to the
input of round 3: Some bytes are xored and some are
added. This combination is done to make the modified
version non-invertible. Figure 9 describes how the input
of round 1 is combined with the input of round 3.
As stated before, all of the algorithms used dur-

ing Bluetooth pairing and authentication process, use
SAFER+ as is, or the modified version of SAFER+. In
the remainder of this paper, SAFER+ is denoted as Ar,
and the modified version of SAFER+ is denoted as A

′

r.
Next subsections describe how E22, E21, E1 are imple-
mented using SAFER+.

B SAFER+ Based Algorithms

B.1 Inner design of E22

As described in subsection 2.1, E22 is used to generate
the initialization key. The inputs used are:

1. a BD ADDR (48 bits long).

2. the PIN code and its length L.

3. a 128 bit random number IN RAND.

At first, the PIN and the BD ADDR are combined to cre-
ate a new word: if the PIN contains less than 16 bytes,
some of the BD ADDR bytes are appended to the PIN. If
the PIN is less than 10 bytes long, all bytes of BD ADDR
shall be used. Let PIN’ denote the new word created,
and L’ denote the number of bytes the new word con-
tains. Now, if L’ is less than 16, the new word is cyclic
expanded till it contains 16 bytes. Let PIN” denote this
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Figure 8: Inner design of SAFER+’s key scheduling algorithm

second new word. PIN” is used as the 128 bit input key
of A

′

r. IN RAND is used as the 128 bit input data, af-
ter xoring the most significant byte with L’. Figure 10
describes the inner design of E22.

B.2 Inner design of E21

As described in subsection 2.1, E21 is used to generate
the link key. The inputs used are:

1. a BD ADDR (48 bits long).

2. a 128 bit random number LK RAND.

At first, the BD ADDR is cyclic expanded to form a 128
bit word which is used as the input data of A

′

r. The
key used for A

′

r consists of the 128 bit random number
LK RAND, after xoring its most significant byte with 6
(result denoted LK RAND’). Figure 11 describes the in-
ner design of E21.

B.3 Inner design of E1

As described in subsection 2.1, E1 is used to perform
mutual-authentication. The inputs used are:

1. A random word AU RANDA.

2. The link keyKab.

3. a BD ADDR (48 bits long).

The inner design of E1 contains both Ar and A
′

r. The
link key is used twice. Once, it is supplied as is for the
key input of Ar. Later, it goes through a transformation
denoted Offset and supplied as the key input of A

′

r. The
“Offset” transformation consists of adding and xoring its
bytes with some constants. For the full description of
this transformation see page 778 of part H of Vol 2 of
[Blu03].
As for the BD ADDR, it is cyclic expanded to form a 128
bit word denoted BD ADDR’. The inner design of E1 is
depicted in figure 12.
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