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Abstract. Motivated by the security of the nonlinear filter generator, the
concept of correlation was previously extended to the conditional correla-
tion, that studied the linear correlation of the inputs conditioned on a given
(short) output pattern of some specific nonlinear function. Based on the con-
ditional correlations, conditional correlation attacks were shown to be suc-
cessful and efficient against the nonlinear filter generator. In this paper, we
further generalize the concept of conditional correlations by assigning it with
a different meaning, i.e. the correlation of the output of an arbitrary function
conditioned on the unknown (partial) input which is uniformly distributed.
Based on this generalized conditional correlation, a general statistical model
is studied for dedicated key-recovery distinguishers. It is shown that the
generalized conditional correlation is no smaller than the unconditional cor-
relation. Consequently, our distinguisher improves on the traditional one
(in the worst case it degrades into the traditional one). In particular, the
distinguisher may be successful even if no ordinary correlation exists. As
an application, a conditional correlation attack is developed and optimized
against Bluetooth two-level E0. The attack is based on a recently detected
flaw in the resynchronization of E0, as well as the investigation of conditional
correlations in the Finite State Machine (FSM) governing the keystream out-
put of E0. Our best attack finds the original encryption key for two-level E0
using the first 24 bits of 223.8 frames and with 238 computations. This is
clearly the fastest and only practical known-plaintext attack on Bluetooth
encryption compared with all existing attacks. Current experiments confirm
our analysis.
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1 Introduction

In stream ciphers, correlation properties play a vital role in correlation attacks (to
name a few, see [7–9, 15, 18, 19, 26, 27, 30]). For LFSR-based3 keystream generators,
such as the nonlinear filter generator or the combiner, correlation commonly means
a statistically biased relation between the produced keystream and the output of
certain LFSR sequences. In [1, 21, 22], the concept of (ordinary) correlations was
further extended to the conditional correlation to describe the linear correlation of
the inputs conditioned on a given (short) output pattern of a nonlinear function
(with small input size). Based on conditional correlations, the conditional correla-
tion attack received successful studies towards the nonlinear filter generator in [1, 21,
22]. In this paper, we assign a different meaning to conditional correlations, i.e. the
correlation of the output of an arbitrary function (with favorable small input size)
conditioned on the unknown (partial) input which is uniformly distributed. This
might be viewed as the generalized opposite of [1, 21, 22]. As a useful application of

3 LFSR refers to Linear Feedback Shift Register, see [28] for more.



our conditional correlations, imagine the attacker not only observes the keystream,
but also has access to an intermediate computation process controlled partly by the
key, which outputs a hopefully biased sequence for the right key and (presumably)
unbiased sequences for wrong keys. If such side information is available, the con-
ditional correlation attack may become feasible, which exploits correlations of the
intermediate computation output conditioned on (part of) the inputs. In general, as
informally conjectured in [22], conditional correlations are different and often larger
than ordinary (unconditional) correlations, which effects reduced data complexity
of conditional correlation attacks over ordinary correlation attacks.

Our first contribution consists of extracting a precise and general statistical
model for dedicated key-recovery distinguishers based on the generalized conditional
correlations. This framework deals with a specific kind of smart distinguishers that
exploit correlations conditioned on the (partial) input, which is not restricted to
keystream generators and is also applicable to other scenarios (e.g. side channel
attacks like fault attacks in [4]). As the ordinary correlation serves as the criterion
for the data complexity of the traditional distinguisher (that only exploits ordinary
correlations), our result based on the sound theory of traditional distinguisher [5]
tells that the conditional correlation serves similarly as the criterion for the data
complexity of the smart distinguisher. The construction of the smart distinguisher
also solves the unaddressed problem in [1, 21, 22] on how to make the best use of
all the collected data, which can be transformed in the context of [1, 21, 22]. We
prove that the smart distinguisher improves on the traditional one (in the worst
case the smart distinguisher degrades into the traditional one), because our gener-
alized conditional correlation is no smaller than the unconditional correlation. In
particular, the smart distinguisher can still work efficiently even though the tradi-
tional one fails thoroughly. Meanwhile, we also study the computational complexity
of the deterministic smart distinguisher for a special case, in which the essence of
the major operation done by the distinguisher is identified to be nothing but the
regular convolution. Thanks to Fast Walsh Transform4 (FWT), when the key size is
not too large, the smart distinguisher is able to achieve the optimal complete infor-
mation set decoding and becomes a very powerful computing machine. Nonetheless,
in general, with a very large key size, it is unrealistic to use the deterministic dis-
tinguisher as complete information set decoding is impractical; many other efficient
decoding techniques (e.g. the probabilistic iterative decoding) such as introduced in
the previous conditional correlation attacks [22] or the correlation attacks will also
apply to our smart distinguisher.

As a second contribution, we apply our smart distinguisher to a conditional cor-
relation attack5 on two-level E0, the keystream generator that is used in the short-
range wireless technology Bluetooth [6]. The attack exploits the resynchronization
flaw recently detected in [24]. Whereas in [24], this flaw is used for a traditional dis-
tinguisher based on results [12, 16, 17, 23] of ordinary correlations, our conditional
correlation attack relies on the systematic investigation of correlations conditioned
on the inputs to the FSM in E0. These correlations extend a specific conditional
correlation found in [23], which relates to one of the largest known biases in E0 as
proved in [23]. The time complexity of our attack is optimized as the smart dis-
tinguisher works particularly well in this favorable case. Our best attack recovers
the original encryption key for two-level E0 using the first 24 bits of 223.8 frames
after 238 computations. Note that the number of necessary frames is below the
maximum number 226 of resynchronizations with the same user key as specified by

4 Note that most recently FWT was successfully applied in [9, 23] to optimize different
problems in correlation attacks.

5 For the conditional correlation attack related to the previous work [1, 21, 22] on Blue-
tooth E0, see [16].



Bluetooth [6]. Compared with all existing attacks [13, 14, 16, 20, 24, 29] on two-level
E0, our attack is clearly the fastest and only practical resynchronization attack6 so
far. Note that the resynchronization attacks on one-level E0 were well studied in [3,
14, 24] to be much more efficient.

The rest of the paper is structured as follows. In Section 2 we introduce some
notations and give preliminaries. In Section 3, based on the generalized conditional
correlation, the practical statistical model on smart distinguishers with side informa-
tion is formalized and analyzed. In Section 4 we review the description of Bluetooth
two-level E0 as well as the resynchronization flaw. In Section 5, correlations condi-
tioned on input weights of E0 FSM are investigated. In Section 6, a key-recovery
attack on two-level E0 is developed and optimized together with experimental re-
sults. Finally, we conclude in Section 7.

2 Notations and Preliminaries

Given the function f : E → GF (2)`, define the distribution Df of f(X) with X
uniformly distributed, i.e. Df (a) = 1

|E|

∑
X∈E 1f(X)=a for all a ∈ GF (2)`. Follow-

ing [5], recall that the Squared Euclidean Imbalance (SEI) of the distribution Df is
defined by

∆(Df ) = 2`
∑

a∈GF (2)`

(
Df (a) −

1

2`

)2

. (1)

For ` = 1, it’s easy to see that ∆(Df ) is closely related to the well known term
correlation7 ε(Df ) by ∆(Df ) = ε2(Df ). For brevity, we adopt the simplified nota-
tions ε(f), ∆(f) to denote ε(Df ), ∆(Df ) respectively hereafter. From the theory of
hypothesis testing and Neyman-Pearson likelihood ratio (see [5]), ∆(f) tells us that
the minimum number n of samples for an optimal distinguisher to effectively dis-
tinguish a sequence of n output samples of f from (2L − 1) truly random sequences
of equal length is

n =
4L log 2

∆(f)
. (2)

Note that the result in Eq.(2) with ` = 1 has long been known up to a constant
factor 1

2 in the theory of channel coding. In fact, correlation attacks has been very
successful for almost two decades to apply the distinguisher that analyzes the biased
sample of a single bit (i.e. the case ` = 1) in order to reconstruct the L-bit key (or
subkey), where only the right key can produce a biased sequence while all the wrong
keys produce unbiased sequences. More recently, on the sound theoretical basis [5] of
the generalized distinguisher, it was shown that this generalized distinguisher helps
to improve the correlation attack when considering multi-biases simultaneously (for
details see the key-recovery attack [23] on one-level E0 which halves the time and
data complexities).

3 A Smart Distinguisher with Side Information

Given a function f : GF (2)u × GF (2)v → GF (2)r, let fB(X) = f(B, X) for B ∈
GF (2)u and X ∈ GF (2)v , where the notation fB(·) is used to replace f(·) whenever
B is given. Consider such a game between a player and an oracle. Each time the

6 A resynchronization attack on stream cipher (a.k.a. the related-key attack) refers to the
one that needs many frames of keystreams produced by different IVs (i.e. the public
frame counter) and the same key in order to recover the key given the IVs.

7 Correlation is commonly defined by Df (1) = 1
2

+
ε(Df )

2
; and |ε(Df )| ≤ 1 by this defini-

tion.



oracle secretly generates B, X independently and uniformly to compute fB(X); the
player, in turn, sends a guess on the current value of the partial input B. Only
when he guesses correctly, the oracle would output the value of fB(X), otherwise,
it would output a random and uniformly distributed Z ∈ GF (2)r. Suppose the
player somehow manages to collect 2L sequences of n interaction samples with the
following characteristics: one sequence has n samples (fBK

i
(Xi),B

K
i ) (i = 1, . . . , n)

where BK
i ’s and Xi’s are independently and uniformly distributed; the remaining

(2L −1) sequences all consist of n independently and uniformly distributed random
variables (ZK

i ,BK
i ) (i = 1, . . . , n) for K 6= K. One interesting question to the

player is how to distinguish the biased sequence from the other sequences using the
minimum number n of samples.

Note that the above problem is of special interest in key-recovery attacks, includ-
ing the related-key attacks, where BK

i ’s are the key-related material (i.e. computable
with the key and other random public parameters) and the oracle can be viewed as
an intermediate computation process accessible to the attacker with only a limited
number of queries. Thus, when the attacker knows the right key K he can collect
n (hopefully biased) samples of f ; on the other hand, if he uses the wrong key, he
will only collect an unbiased sequence.

From Section 2, we know that the minimum number n of samples for the basic
distinguisher which doesn’t use the partial input Bi’s is n = 4L log 2/∆(f). When
the samples are incorporated with the Bi’s, we can prove the following stronger
result.

Theorem 1. The smart distinguisher (in Algorithm 1) solves our above problem
with

n =
4L log 2

E[∆(fB)]
(3)

and the time complexity O(n · 2L), where the expectation is taken over all the uni-
formly distributed B. Moreover, the distinguisher can achieve the optimal time com-
plexity O(n + L · 2L+1) with precomputation O(L · 2L) when BK

i ’s and ZK
i ’s can be

expressed by:

BK
i = L(K) ⊕ ci , (4)

ZK
i = L′(K) ⊕ c′i ⊕ g(BK

i ) , (5)

for all L-bit K and i = 1, 2, . . . , n, where g is an arbitrary function, L,L′ are
GF (2)-linear functions, and ci’s, c′i’s are independently and uniformly distributed
which are known to the distinguisher.

Remark 2. Our smart distinguisher (Algorithm 1) turns out to be a derivative of the
basic distinguisher in [5] and the result Eq.(3) for the simple case r = 1 was already
pointed out (without proof) in [16] with a mere difference of a negligible constant
term 2 log 2 ≈ 20.47. Also note that the quantity E[∆(fB)] in Eq.(3) measures the
correlation of the output of an arbitrary function conditioned on the (partial) input
which is uniformly distributed and unknown8. In contrast, prior to our work, the
conditional correlation, that refers to the linear correlation of the inputs conditioned
on a given (short) output pattern of a nonlinear function, was well studied in [1,
21, 22] based on a different statistical distance other than SEI. Highly motivated
by the security of the nonlinear filter generator, their research focused on the case
where the nonlinear function is the augmented nonlinear filter function (with small
input size) and the inputs are the involved LFSR taps. Obviously, the notion of our

8 According to the rule of our game, it’s unknown to the distinguisher whether the sample
B is the correct value used for the oracle to compute fB(X) or not.



Algorithm 1 The smart distinguisher with side information

Parameters:
1: n set by Eq.(3)
2: DfB for all B ∈ GF (2)u

Inputs:
3: uniformly and independently distributed u-bit BK

1 , . . . ,BK
n for all L-bit K

4: ZK
1 , . . . , ZK

n = f
BK

1
(X1), . . . , fBK

n
(Xn) for one fixed L-bit K with uniformly and inde-

pendently distributed v-bit vectors X1, . . . , Xn

5: uniformly and independently distributed sequences ZK
1 , ZK

2 , . . . , ZK
n for all L-bit K

such that K 6= K
Goal: find K
Processing:
6: for all L-bit K do

7: G(K)← 0
8: for i = 1, . . . , n do

9: G(K)← G(K) + log2

“
2r ·Df

BK
i

(ZK
i )

”

10: end for

11: end for

12: output K that maximizes G(K)

conditional correlation can be seen as the generalized opposite of [1, 21, 22], that
addresses the issue of how to make the most use of all the data for the success.
In Section 6, Theorem 1 is directly applied to Bluetooth two-level E0 for a truly
practical attack.

Proof (sketch). Let us introduce a new distribution D over GF (2)r+u from DfB

defined by

D(B, Z) =
1

2u
DfB(Z), (6)

for all B ∈ GF (2)u, Z ∈ GF (2)r . We can see that our original problem is trans-
formed into that of the basic distinguisher to distinguish D from uniform distribu-
tion. According to Section 2, we need minimum n = 4L log 2/∆(D). So we compute
∆(D) by Eq.(1,6):

∆(D) = 2r+u
∑

B∈GF (2)u

∑

Z∈GF (2)r

(
D(B, Z) −

1

2r+u

)2

= 2r+u
∑

B∈GF (2)u

∑

Z∈GF (2)r

(
1

2u
DfB(Z) −

1

2r+u

)2

= 2−u
∑

B∈GF (2)u

2r
∑

Z∈GF (2)r

(
DfB(Z) −

1

2r

)2

= E[∆(fB)]. (7)

Meanwhile, the best distinguisher tries to maximize the probability
∏n

i=1 D(Bi, Zi),
i.e. the conditioned probability

∏n
i=1 DfBi

(Zi). As the conventional approach, we

know that this is equivalent to maximize G =
∑n

i=1 log2(2
r ·DfBi

(Zi)) as shown in

Algorithm 1. The time complexity of the distinguisher9 is obviously O(n · 2L).

9 In this paper, we only discuss the deterministic distinguisher. For the probabilistic distin-
guisher, many efficient and general decoding techniques (e.g. the probabilistic iterative
decoding), which are successful in correlation attacks, were carefully presented in the
related work [22] and such techniques also apply to our distinguisher.



Now, to show how to optimize the time complexity of the smart distinguisher
when BK

i ’s and ZK
i ’s exhibit the special structure of Eq.(4, 5) for the second part

of the theorem, let us first introduce two functions H,H′:

H(K) =

n∑

i=1

1L(K)=ci and L′(K)=c′i
(8)

H′(K) = log2

(
2r · DfL(K)

(L′(K) ⊕ g (L(K)))
)

(9)

for K ∈ GF (2)L. We can see that G(K) computed in Line 7 to 10, Algorithm 1 is
nothing but a simple convolution (denoted by ⊗) between H and H′:

G(K) = (H⊗H′)(K)
def
=

∑

K′∈GF (2)L

H(K ′)H′(K ⊕ K ′), (10)

for all K ∈ GF (2)L. It’s known that convolution and Walsh transform (denoted by
the hat symbol) are transformable, so we have

G(K) =
1

2L

̂̂
H⊗H′ (K) =

1

2L
Ĥ′′(K), (11)

where H′′(K) = Ĥ(K)·Ĥ′(K). This means that after computing H and H′, the time
complexity of our smart distinguisher would be dominated by three times of FWT,
i.e. Ĥ, Ĥ′, Ĥ′′ in O(3L ·2L). Moreover, since only ci’s, c′i’s may vary from one run of

the attack to another, which are independent of H′, we can also precompute Ĥ′ and
store it in the table; finally, the real-time processing only takes time O(n+L ·2L+1).
�

Property 3. We have
E[∆(fB)] ≥ ∆(f),

where equality holds if and only if (iff) DfB is independent of B.

For r = 1, this can be easily shown as follows. From Section 2, we have E[∆(fB)] =
E[ε2(fB)] ≥ E2[ε(fB)] = ε2(f) = ∆(f) where equality holds iff ε(fB) is independent
of B. In Appendix, we give the complete proof for the general case E[∆(fB)] ≥ ∆(f).

Remark 4. As E[∆(fB)], ∆(f) measures the conditional correlation and the uncon-
ditional correlation respectively, this property convinces us that the former is no
smaller than the latter. This relationship between the conditional correlation and
the unconditional correlation was informally conjectured in [22]. We conclude from
Eq.(3) that the smart distinguisher having partial (or side) information (i.e. B
herein) about the biased source generator (i.e. fB herein) always works better than
the basic distinguisher governing no knowledge of that side information, as long as
the generator is statistically dependent on the side information. Our result verifies
the intuition that the more the distinguisher knows about the generation of the
biased source, the better it works. In particular, Property 3 implies that even if
the fact that ∆(f) = 0 causes the basic distinguisher to be completely useless as it
needs infinite data complexity, in contrast, the smart distinguisher would still work
as long as DfB is dependent on B, i.e. E[∆(fB)] > 0. In Section 5, we give two
illustrative examples E[∆(fB)] on the core of Bluetooth E0 to be compared with
their counterparts ∆(f).

4 Review on Bluetooth Two-level E0

The core (Fig. 1) of Bluetooth keystream generator E0 (also called one-level E0)
consists of four regularly-clocked LFSRs of a total 128 bits and a Finite State
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Fig. 1. The core of Bluetooth keystream generator E0

Machine (FSM) of 4 bits. Denote Bt ∈ GF (2)4 the four output bits of LFSRs at
time instance t, and Xt ∈ GF (2)4 the FSM state at time instance t. Note that Xt

contains the bit c0
t as well as the bit c0

t−1 (due to the effect of a delay cell inside the
FSM). Also note that the computation of the FSM next state Xt+1 only depends on
its current state Xt together with the Hamming weight w(Bt) of Bt. At each time
instance t, the core produces one bit st = (w (Bt) mod 2) ⊕ c0

t , and then updates
the states of LFSRs and FSM.

According to the Bluetooth standard [6], this core is used with a two-level ini-
tialization scheme to produce the keystream for encryption. That is, after a first
initialization of LFSRs by an affine transformation of the effective encryption key
K and the public nonce10 P i for the i-th frame, E0 runs at level one, whose last 128
output bits are permuted into LFSRs at level two for reinitialization; then E0 runs
at level two to produce the final keystream zi

t′ for t′ = 1, 2, . . . , 2745 (for clarity,
we refer the time instance t and t′ to the context of E0 level one and E0 level two
respectively).

In order to review the reinitialization flaw discovered in [24], we first introduce
some notations. Define the binary vector γ = (γ0, γ1, . . . , γ`−1) of length |γ| = ` ≥ 3
with γ0 = γ`−1 = 1 and let γ̄ = (γ`−1, γ`−2, . . . , γ0) represent the vector in reverse
order of γ. Given ` and t, for the one-level E0, we define Bt+1 = Bt+1Bt+2 . . . Bt+`−2

and Ct = (c0
t , . . . , c

0
t+`−1). Then, the function hγ

Bt+1
: Xt+1 7→ γ ·Ct is well defined11

for all t, where the dot operator between two vectors represents the inner GF (2)-
product. Now, we let (Bi

t+1, X
i
t+1) (resp. (Bi

t′+1, X
i
t′+1)) control the FSM to compute

Ci
t (resp. Ci

t′) at E0 first (resp. second) level for the i-th frame. Note that initializa-
tion of LFSRs at E0 level one by an affine transformation of K,P i can be expressed
by

Bi
t = Gt(K) ⊕ G′

t(P
i), (12)

where Gt,G
′
t are public linear functions (which are dependent on ` but omitted from

notations for simplicity). Moreover, we let Z i
t′ = (zi

t′ , . . . , z
i
t′+`−1). Then, as pointed

out and detailed in [24], the critical reinitialization flaw of Bluetooth two-level E0
can be expressed as

γ̄ · (Zi
t′ ⊕Lt′(K) ⊕L′

t′(P
i)) =

4⊕

j=1

(γ · Ci
tj

) ⊕ (γ̄ · Ci
t′), (13)

10 Pi includes a 26-bit counter and some user-dependent constant.
11 because c0

t , c
0
t+1 are contained in Xt+1 already and we can compute c0

t+2, . . . , c
0
t+`−1 by

Bt+1, Xt+1. Actually, the prerequisite γ0 = γ`−1 = 1 on γ is to guarantee that knowledge
of Bt+1, Xt+1 is necessary and sufficient to compute γ · Ct.



for any i and γ of length ` such that 3 ≤ ` ≤ 8, and t′ ∈
⋃2

k=0{8k+1, . . . , 8k+9−`},
where t1, . . . , t4 are functions12 in terms of t′ only, and Ci

t1
, . . . , Ci

t4
share no common

coordinate, and Lt′ ,L
′
t′ are fixed linear functions which can be expressed by t′, `

from the standard. By definition of h, Eq.(13) can be put equivalently as:

γ̄ · (Zi
t′ ⊕Lt′(K) ⊕L′

t′(P
i)) =

4⊕

j=1

hγ

Bi
tj+1

(X i
tj+1) ⊕ hγ̄

Bi
t′+1

(X i
t′+1), (14)

for any i, any γ with 3 ≤ ` ≤ 8 and t′ ∈
⋃2

k=0{8k + 1, . . . , 8k + 9 − `}. Note that
the usage of the bar operator actually reflects the fact that the loading of LFSRs
at E0 level two for reinitialization is in reverse order of the keystream output at E0
level one.

5 Correlations Conditioned on Input Weights of FSM

Recall it has been observed in [23] that if w(Bt)w(Bt+1)w(Bt+2)w(Bt+3) = 2222 is
satisfied, then, we always have

c0
t ⊕ c0

t+1 ⊕ c0
t+2 ⊕ c0

t+3 ⊕ c0
t+4 = 1. (15)

Let αt = γ · Ct with γ = (1, 1, 1, 1, 1) and ` = 5. Thus αt is the sum on the left-
hand side of Eq.(15). From Section 4 we know that given Bt+1 = Bt+1Bt+2Bt+3 ∈

GF (2)12, the function hγ
Bt+1

: Xt+1 7→ αt is well defined for all t. Let W (Bt+1)
def
=

w(Bt+1)w(Bt+2) · · ·w(Bt+`−2). Thereby, we deduct from [23] that αt = 1 whenever
W (Bt+1) = 222. In contrast to the (unconditional) correlation as mentioned in
Section 2, we call it a conditional correlation13, i.e. the correlation ε(hγ

Bt+1
) = 1

conditioned on W (Bt+1) = 222.

This motivates us to study the general correlation ε(hγ
Bt+1

) conditioned on Bt+1,

or more precisely W (Bt+1), when Xt+1 is uniformly distributed. All the non-zero
conditional correlations ε(hγ

Bt+1
) are shown in Table 1 in descending order of the

absolute value, where |Bt+1| denotes the cardinality of Bt+1 admitting any weight
triplet in the group. As the unconditioned correlation ε(hγ) of the bit αt always
equals the mean value14 E[ε(hγ

Bt+1
)] over the uniformly distributed Bt+1, we can

use Table 1 to verify ε(hγ) = 25
256 (denote this value15 by λ). Let fB = hγ

Bt+1
with

γ = (1, 1, 1, 1, 1). Now, to verify Property 3 in Section 3 we compute E[∆(fB)] =
544
212 ≈ 2−2.9, which is significantly larger than ∆(f) = λ2 ≈ 2−6.67. As another
example, consider now fB = hγ

Bt+1
with γ = (1, 1, 0, 1) and u = 8, v = 4, r = 1.

Similarly, the conditioned correlation of the corresponding sum c0
t ⊕ c0

t+1 ⊕ c0
t+3

(denoted by α′
t) is shown in Table 2. From Table 2, we get a quite large E[∆(fB)] =

12 additionally, given t′, the relation t1 < t2 < t3 < t4 always holds that satisfies t2 − t1 =
t4 − t3 = 8 and t3 − t2 ≥ 32.

13 Note that earlier in [16], correlations conditioned on keystream bits (both with and
without one LFSR outputs) were well studied for one-level E0, which differ from our
conditional correlations and do not fit in the context of two-level E0 if the initial state
of E0 is not recovered level by level.

14 Note that E[ε(hγ
Bt+1

)] is computed by an exhaustive search over all possible Xt+1 ∈

GF (2)4, Bt+1 ∈ GF (2)12 and thus does not depend on t.
15 this unconditional correlation was discovered by [12, 16] and proved later on by [23] to

be one of the two largest unconditioned correlations up to 26-bit output sequence of the
FSM.



2−3 as well; in contrast, we can check that as already pointed out in Section 3, the
unconditional correlation16 ∆(f) = 0 from Table 2.

Table 1. Weight triplets to generate the biased bit αt with γ = (1, 1, 1, 1, 1) and ` = 5

bias of αt weight triplet(s) cardinality
ε(hγ

Bt+1
) W (Bt+1) |Bt+1|

-1 220, 224 72

1 222 216

-0.5 120, 124, 210, 214 192
230, 234, 320, 324

0.5 122, 212, 322, 232 576

110, 111, 114, 130
-0.25 131, 134, 310, 311 384

314, 330, 331, 334

0.25 112, 113, 132, 133 640
312, 313, 332, 333

Table 2. Weight pairs to generate the biased bit α′
t with γ = (1, 1, 0, 1) and ` = 4

bias of α′
t weight pairs cardinality

ε(hγ
Bt+1

) W (Bt+1) |Bt+1|

-1 01, 43 8

1 03, 41 8

-0.5 11, 33 32

0.5 13, 31 32

6 Key-recovery Attack on Bluetooth Two-level E0

6.1 Basic Idea

Given the binary vector γ (to be determined later) with 3 ≤ ` ≤ 8, for all B ∈
GF (2)4(`−2) such that ε(hγ

B) 6= 0, define the function

gγ(B) =

{
1, if ε(hγ

B) > 0
0, if ε(hγ

B) < 0

to estimate the effective value of hγ
B(X) (defined in Section 4) for some unknown

X ∈ GF (2)4. For a fixed t′ ∈
⋃2

k=0{8k + 1, . . . , 8k + 9 − |γ|}, let us guess the

subkey K1
def
= (Gt1(K), . . . ,Gt4(K)) of 16(` − 2) bits by K̂1 and the one-bit subkey

K2
def
= γ̄ · Lt′(K) by K̂2. We set K = (K1, K2), K̂ = (K̂1, K̂2). As P i’s are public,

for every frame i, we can use Eq.(12) to compute the estimate B̂i
tj+1 for Bi

tj+1 for

16 Note that on the other hand the unconditional correlation ε(hγ) = 2−4 with γ =
(1, 0, 1, 1) (denote this value by λ′), shown first in [17], was proved by [23] to be the only
second largest unconditioned correlations up to 26-bit output sequence of the FSM.



j = 1, . . . , 4 with K̂1. Denote

Bi = (Bi
t1+1,B

i
t2+1,B

i
t3+1,B

i
t4+1),

X i = (X i
t1+1, X

i
t2+1, X

i
t3+1, X

i
t4+1, X

i
t′+1,B

i
t′+1, K̂).

Define the probabilistic mapping Fγ

Bi(X
i) to be a truly random bit with uniform

distribution for all i such that
∏4

j=1 ε(hγ

B̂i
tj+1

) = 0; otherwise, we let

Fγ

Bi(X
i) =

4⊕

j=1

(
hγ

Bi
tj+1

(X i
tj+1) ⊕ gγ(B̂i

tj+1)

)
⊕ hγ̄(Bi

t′+1, X
i
t′+1). (16)

Note that given K̂2, F
γ

Bi(X
i) is accessible in the latter case as we have

Fγ

Bi(X
i) = γ̄ ·

(
Zi

t′ ⊕L′
t′(P

i)
)
⊕ K̂2 ⊕

4⊕

j=1

gγ(B̂i
tj+1),

for all i such that
∏4

j=1 ε(hγ

B̂i
tj+1

) 6= 0 according to Eq.(14). With the correct guess

K̂ = K, Eq.(16) reduces to

Fγ

Bi(X
i) =

4⊕

j=1

(
hγ

Bi
tj+1

(X i
tj+1) ⊕ gγ(Bi

tj+1)

)
⊕ hγ̄(Bi

t′+1, X
i
t′+1), (17)

for all i such that
∏4

j=1 ε(hγ

Bi
tj+1

) 6= 0. As the right-hand side of Eq.(17) only involves

the unknown X i = (X i
t1+1, X

i
t2+1, X

i
t3+1, X

i
t4+1, X

i
t′+1,B

i
t′+1), we denote the map-

ping in this case by fγ

Bi(X
i). With appropriate choice of γ as discussed in the next

subsection, we can have E[∆(fγ

Bi)] > 0. With each wrong guess K̂ 6= K, however,
as shown in Appendix, we estimate Fγ

Bi(X
i) to be uniformly and independently

distributed for all i (i.e. E[∆(Fγ

Bi)] = 0).
As we are interested in small ` for low time complexity, e.g. |`| < 6 as explained

immediately next, we can assume from this constraint17 that X i’s are uniformly
distributed and that all X i’s, Bi’s are independent. Submitting 2L sequences of n

pairs (Fγ

Bi(X
i), B̂i) (for i = 1, 2, . . . , n) to the distinguisher, we can fit in the smart

distinguisher of Section 3 with L = 16(`−2)+1, u = 16(`−2), v = 20+4(`−2), r = 1
and expect it to successfully recover L-bit K with data complexity n sufficiently
large as analyzed later. Note that the favourable L < 64 necessitates that ` < 6.

6.2 Complexity Analysis and Optimization

From Eq.(3) in Section 3, the smart distinguisher needs data complexity

n =
4L log 2

E
[
∆

(
fγ

Bi

)] . (18)

To compute n, we introduce another probabilistic mapping f
′γ

Bi similar to fγ

Bi :

f
′γ

Bi(X
i)

def
=

4⊕

j=1

hγ

Bi
tj+1

(X i
tj+1) ⊕ hγ̄(Bi

t′+1, X
i
t′+1). (19)

17 however, the assumption does not hold for ` = 7, 8: with ` = 8, we know that X i
t2+1

is fixed given Xi
t1+1 and Bi

t1+1 as we have t2 = t1 + 8 from Section 4; with ` = 7,
two bits of Xi

t2+1 are fixed given Xi
t1+1 and Bi

t1+1. Similar statements hold concerning
Xi

t3+1,B
i
t3+1 and Xi

t4+1.



Theorem 5. For all Bi = (Bi
t1+1,B

i
t2+1,B

i
t3+1,B

i
t4+1) ∈ GF (2)16(`−2), we always

have
∆(fγ

Bi) = ∆(f
′γ

Bi).

Proof. This is trivial for the case where
∏4

j=1 ε(hγ

Bi
tj+1

) = 0, because by defini-

tion Df
γ

Bi
is a uniform distribution and so is D

f
′γ

Bi

by the famous Piling-up lemma

(see [25]). Let us discuss the case where
∏4

j=1 ε(hγ

Bi
tj+1

) 6= 0. In this case we know

that given Bi,
⊕4

j=1 gγ(Bi
tj+1) is well-defined and it is a fixed value that doesn’t

depend on the unknown X i. Consequently, we have ∆(fγ

Bi) = ∆(f
′γ

Bi ⊕ const.) =

∆(f
′γ

Bi). �

We can use Theorem 5 to compute 4L log 2
n

from Eq.(18) as 4L log 2
n

= E[∆(fγ

Bi)] =

E[∆(f
′γ

Bi)]. Next, the independence of Bi’s allows us to apply Piling-up Lemma [25]
to continue as follows,

4L log 2

n
= E


∆(hγ̄)

4∏

j=1

∆

(
hγ

Bi
tj+1

)
 = ∆(hγ̄)

4∏

j=1

E

[
∆

(
hγ

Bi
tj+1

)]
.

Because we know from Section 5 that E[∆(hγ

Bi
t+1

)] does not depend on t and i, we

finally have
4L log 2

n
= ∆(hγ̄) · E4

[
∆

(
hγ
Bt+1

)]
. (20)

As we want to minimize n, according to Eq.(18), we would like to find some γ
(3 ≤ |γ| < 6) such that E[∆(fγ

Bi)] is large, and above all, strictly positive. In
order to have E[∆(fγ

Bi)] > 0, we must have ∆(hγ̄) > 0 first, by Eq.(20). According
to results of [16, 17, 12, 23], only two aforementioned choices satisfy our predefined
prerequisite about γ (i.e. both the first and last coordinates of γ are one): either γ =
(1, 1, 1, 1, 1) with ∆(hγ̄) = λ2 ≈ 2−6.71, or γ = (1, 1, 0, 1) with ∆(hγ̄) = λ′2 = 2−8.
For γ = (1, 1, 1, 1, 1), from last section, we know that E[∆(hγ

Bt+1
)] ≈ 2−2.9. So we

conclude from Eq.(20) that n ≈ 225.4 frames of keystreams generated by the same
key K suffice to recover the L = 49-bit subkey K. Analogously, for γ = (1, 1, 0, 1),
we have E[∆(hγ

Bt+1
)] = 2−3 from last section. And it results in n ≈ 226.5 frames to

recover L = 33-bit subkey.
Let us discuss the time complexity of the attack now. For all J = (J1, J2) ∈

GF (2)L−1 × GF (2), and let J1 = (J1,1, . . . , J1,4) where J1,i ∈ GF (2)4(`−2), we
define H,H′:

H(J) =
∑n

i=1 1G′
t1

(Pi),...,G′
t4

(Pi)=J1 and γ̄·(Zi
t′
⊕L′

t′
(Pi))=J2

,

H′(J) =

{
0, if

∏4
i=1 ε(hγ

J1,i
) = 0

log 2r · DJ1

(
J2 ⊕

⊕4
i=1 gγ (J1,i)

)
, otherwise

where DJ1 = Dh
γ

J1,1
⊗ Dh

γ

J1,2
⊗ Dh

γ

J1,3
⊗ Dh

γ

J1,4
. Let H′′(K) = Ĥ(K) · Ĥ′(K). By

Theorem 1 in Section 3, we have G(K) = 1
2L Ĥ′′(K). This means that after precom-

puting Ĥ′ in time O(L · 2L), our partial key-recovery attack would be dominated

by twice FWT, i.e. Ĥ, Ĥ′′ with time O(L · 2L+1). Algorithm 2 illustrates the above
basic partial key-recovery attack. Note that without the optimization technique of
Theorem 1, the deterministic smart distinguisher has to perform O(n·2L) operations
otherwise, which makes our attack impractical.



Algorithm 2 The basic partial key-recovery attack on two-level E0

Parameters:
1: γ, t′, t1, t2, t3, t4, L

2: n set by Eq.(20)
Inputs:
3: Pi for i = 1, 2, . . . , n

4: Zi
t′ for i = 1, 2, . . . , n

Preprocessing:
5: compute H ′, cH ′

Processing:
6: compute H, bH
7: compute H ′′ = bH · cH ′ and cH ′′

8: output K with the maximum cH ′′(K)

Furthermore, by Table 2, we discovered a special property

ε(hγ
Bt+1Bt+2

) ≡ ε(hγ

Bt+1Bt+2
) ≡ −ε(hγ

Bt+1Bt+2
) ≡ −ε(hγ

Bt+1Bt+2
) (21)

for all Bt+1 = Bt+1Bt+2 ∈ GF (2)8 with γ = (1, 1, 0, 1), where the bar operator
denotes the bitwise complement of the 4-bit binary vector. This means that for
our 33-bit partial key-recovery attack, we always have 44 = 256 equivalent key
candidates18 (see Appendix for details), which helps to decrease the computation

time on Ĥ ′′ (see [23]) from 33 × 233 ≈ 238 to 25 × 225 ≈ 230. In total we have the
running time 238 + 230 ≈ 238 for Algorithm 2.

We have implemented the full Algorithm 2 with γ = (1, 1, 0, 1), t′ = 1, n = 226

frames (slightly less than the theoretical estimate 226.5) on the Linux platform,
2.4G CPU, 2G RAM, 128GB hard disk. It turned out that after one run of a 37-
hour precomputation (i.e. Line 5 in Algorithm 2 which stores a 64GB table in the
hard disk), of all the 30 runs tested so far, our attack never fails to successfully

recover the right 25-bit key in about 19 hours. Computing H, Ĥ, H ′′, Ĥ ′′ takes time
27 minutes, 18 hours, 45 minutes and 20 seconds respectively. The running time
is dominated by FWT19 Ĥ , which only takes a negligible portion of CPU time
and depends dominantly on the performance of the hardware, i.e. the external data
transfer rate20 between the hard disk and PC’s main memory.

Inspired by the multi-bias analysis on the traditional distinguisher in [23], the
advanced multi-bias analysis (see Appendix) which is an extension of this section
allows us to reach the data complexity n ≈ 223.8 frames with the same time com-
plexity. Once we recover the first (33 − 8) = 25-bit subkey, we just increment (or
decrement) t′ by one and use the knowledge of those subkey bits to reiterate Algo-
rithm 2 to recover more key bits similarly as was done in [24]. Since only 17 new
key bits are involved, which reduce to the 13-bit equivalent key, it’s much faster
to recover those key bits. Finally, we perform an exhaustive search over the equiv-
alent key candidates in negligible time, whose total number is upper bounded by

2
8|K|
32 = 2

|K|
4 . The final complexity of the complete key-recovery attack is bounded

by one run of Algorithm 2, i.e. O(238). Table 3 compares our attacks with the best
known attacks [13, 14, 16, 24] on two-level E0 for effective key size |K| = 128. Note
that with |K| = 64, Bluetooth key loading at E0 level one makes the bits of the

subkey K linearly independent for all t′ ∈
⋃2

k=0{8k + 1, . . . , 8k + 5}. Therefore, the
attack complexities remain to be on the same order.

18 The term “equivalent key candidate” is exclusively used for our attack, which doesn’t
mean that they are equivalent keys for the Bluetooth encryption.

19 The result is stored in a 32GB table in the hard disk.
20 In our PC it is 32MB/s, which is common in the normal PC nowadays.



Table 3. Comparison of our attacks with the best attacks on two-level E0 for |K| = 128

Attack Precomputation Time Frames Data Memory

Fluhrer-Lucks [13] - 273 - 243 251

Fluhrer [14] 280 265 2 212.4 280

Golić et al. [16] 280 270 45 217 280

Lu-Vaudenay [24] - 240 235 239.6 235

Our basic 238 238 226.5 231.1 233

Attacks advanced 238 238 223.8 228.4 233

7 Conclusion

In this paper, we have generalized the concept of conditional correlations in [1, 21,
22] to study conditional correlation attacks against stream ciphers and other cryp-
tosystems, in case the computation of the output allows for side information related
to correlations conditioned on the input. A general framework has been developed
for smart distinguishers, which exploit those generalized conditional correlations. In
particular, based on the theory of the traditional distinguisher [5] we derive the num-
ber of samples necessary for a smart distinguisher to succeed. It is demonstrated
that the generalized conditional correlation is no smaller than the unconditional
correlation. Consequently, the smart distinguisher improves on the traditional basic
distinguisher (in the worst case the smart distinguisher degrades into the traditional
one); the smart distinguisher could be efficient even if no ordinary correlations exist.
As an application of our generalized conditional correlations, a conditional correla-
tion attack on the two-level Bluetooth E0 is developed and optimized. Whereas the
analysis in [24] was based on a traditional distinguishing attack using the strongest
(unconditional) 5-bit correlation, we have successfully demonstrated the superiority
of our attack over [24] by showing a best attack using 4-bit conditional correla-
tions, which are not suitable for the attack in [24] as the corresponding ordinary
correlations are all zeros. Our best attack fully recovers the original encryption key
using the first 24 bits of 223.8 frames and with 238 computations. Compared with
all existing attacks [13, 14, 16, 20, 24, 29], this is clearly the fastest and only prac-
tical known-plaintext attack on Bluetooth encryption so far. It remains to be an
interesting challenge to investigate the redundancy in the header of each frame for
a practical ciphertext-only attack on Bluetooth encryption.
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Appendix

Proof for E[∆(fB)] ≥ ∆(f)

By Eq.(7), we have

E[∆(fB)] = 2r
∑

A∈GF (2)r

E

[(
DfB(A) −

1

2r

)2
]

, (22)

where the expectation is taken over uniformly distributed B for the fixed A. On the
other hand, since Df (A) = E[DfB(A)] for any fixed A, we have

∆(f) = 2r
∑

A∈GF (2)r

(
Df (A) −

1

2r

)2

(23)

= 2r
∑

A∈GF (2)r

(
E [DfB (A)] −

1

2r

)2

(24)

= 2r
∑

A∈GF (2)r

E2

[
DfB(A) −

1

2r

]
, (25)

by definition of Eq.(1), with all the expectation taken over uniformly distributed B
for the fixed A. As we know from theory of statistics that for any fixed A,

0 ≤ Var

[
DfB(A) −

1

2r

]
= E

[(
DfB(A) −

1

2r

)2
]
− E2

[
DfB (A) −

1

2r

]
(26)

always holds, where equality holds iff DfB (A) is independent of B. �



Approximation of Distribution of F
γ

Bi(X
i) for Wrong Keys

Firstly, with K̂1 6= K1, the reason that we estimate Fγ

Bi(X
i) to be uniformly

and independently distributed for all i can be explained as follows for the cases21

when
∏4

j=1 ε(hγ

Bi
tj+1

) 6= 0. Assuming that P i’s are uniformly and independently dis-

tributed, we deduct by Eq.(12) that so are B̂i’s for every K̂, where B̂i = (B̂i
t1+1, . . .,

B̂i
t4+1). Hence, we estimate gγ(B̂i

tj+1) for j = 1, . . . , 4 are also uniformly and in-

dependently distributed, which allows to conclude by Eq.(16) that DFγ

Bi
can be

approximated by a uniformly distributed sequence.
Secondly, in the remaining one case of wrong guess such that K̂1 = K1 and

K̂2 6= K2, F
γ

Bi(X
i) is no longer uniformly distributed ; but it is more favourable to

us, because we have Fγ

Bi(X
i) = fγ

Bi(X
i) ⊕ 1 for all i such that

∏4
j=1 ε(hγ

Bi
tj+1

) 6= 0,

whose distribution has larger Kullback-Leibler distance (see [11]) to Df
γ

Bi
than a

uniform distribution does according to [5].
In all, we can pessimistically approximate DFγ

Bi
by a uniform distribution for

each wrong guess K̂ 6= K.

Advanced Application

Having studied how to apply Section 3 with r = 1 (namely the uni-bias-based
approach) for an attack to E0 in Section 6, we wonder the possibility of improve-
ment based on multi-biases in the same spirit as in [23], which are utilized by the
traditional distinguisher.

For the reason of low time complexity of the attack, we still focus on analysis of
4-bit biases; additionally, we restrict ourselves to bi-biases analysis (i.e. r = 2) to
simplify the presentation, which will be shown later to be optimal. Let Γ = (γ1, γ2),

where γ1 is fixed to (1, 1, 0, 1) and γ2 with length `2
def
= |γ2| = 4 remains to be

determined later such that the data complexity is lowered when we analyze the
characteristics of bi-biases simultaneously for each frame instead of conducting the
previous uni-bias-based analysis.

Recall that gγ1(B) : GF (2)8 → GF (2) in Section 6 was defined to be the most
likely bit of hγ1

B (X) for a uniformly distributed X ∈ GF (2)4 if it exists (i.e. ε(hγ
B) 6=

0). We extend gγ1(B) : GF (2)8 → GF (2) to gΓ (B) : GF (2)8 → GF (2)2 over all
B ∈ GF (2)8 such that ε(hγ1

B ) 6= 0, and let gΓ (B) be the most likely 2-bit binary
vector β = (β1, β2). Note that we can always easily determine the first bit β1 because
of the assumption ε(hγ1

B ) 6= 0; with regards to determining the second bit β2 in case
that a tie occurs, we just let β2 be a uniformly distributed bit. Let

hΓ
B(X) = (hγ1

B (X), hγ2

B (X)), (27)

hΓ̄ (B, X) = (hγ̄1(B, X), hγ̄2(B, X)). (28)

Note that hΓ
B(X) outputs the two bits which are generated by the same unknown

X given B; by contrast, hΓ̄ (B, X) outputs the two bits which are generated by the
unknown X and B. We can extend Fγ1

Bi (X
i) in Eq.(16) to FΓ

Bi(X i) by letting

FΓ
Bi(X i)

=




4⊕

j=1

hγ1

Bi
tj+1

(X i
tj+1) ⊕ hγ̄1(Bi

t′+1, X
i
t′+1),

4⊕

j=1

hγ2

Bi
tj+1

(X i
tj+1) ⊕ hγ̄2(Bi

t′+1, X
i
t′+1)




⊕gΓ (B̂i
tj+1), (29)

21 By definition of Fγ

Bi , this is trivial for the cases when
Q4

j=1 ε(hγ

Bi
tj+1

) = 0.



if
∏4

j=1 ε(hγ1

B̂i
tj+1

) 6= 0; otherwise, we let it be a uniformly distributed two-bit vector.

Similarly, we denote FΓ
Bi(X i) corresponding to the correct guess by fΓ

Bi .
It’s easy to verify the assumption holds to apply Section 3 that says DFΓ

Bi
can

still be approximated by a uniform distribution for each wrong guess on the key

K̂ 6= K. Moreover, by introducing the extended f
′Γ
Bi from f

′γ1

Bi in Eq.(19) as

f
′Γ
Bi (X i)

def
= (f

′γ1

Bi (X i), f
′γ2

Bi (X i)) (30)

=




4⊕

j=1

hγ1

Bi
tj+1

(X i
tj+1) ⊕ hγ̄1(Bi

t′+1, X
i
t′+1),

4⊕

j=1

hγ2

Bi
tj+1

(X i
tj+1) ⊕ hγ̄2(Bi

t′+1, X
i
t′+1)


 .

Theorem 5 can be extended to the generalized theorem below

Theorem 6. For all Bi = (Bi
t1+1,B

i
t2+1,B

i
t3+1,B

i
t4+1) ∈ GF (2)32, we always have

∆(fΓ
Bi) = ∆(f

′Γ
Bi ).

Similar computation yields the same formula for data complexity we need as in
Eq.(20)

4L log 2

n
= ∆(hΓ̄ ) · E4

[
∆

(
hΓ
Bt+1

)]
. (31)

Experimental result shows that with γ1 = (1, 1, 0, 1), γ2 = (1, 0, 1, 1), we achieve
optimum ∆(hΓ

Bt+1
) ≈ 2−2.415 (in comparison to ∆(hγ1

Bt+1
) = 2−3 previously), though

∆(hΓ̄ ) always equals ∆(hγ̄1) regardless of the choice of γ2; additionally, ∆(hΓ̄ ) ≡ 0
if γ1, γ2 6= (1, 1, 0, 1). Therefore, we have the minimum data complexity n ≈ 223.8

frames. And the time complexity remains the same according to Theorem 1 in
Section 3.

Equivalent Keys

Recall that in Subsection 6.1 we have the 33-bit key K = (K1, K2), with K1 =
(Gt1(K), . . . ,Gt4(K)). For simplicity, we let K1,i = Gti

(K). Define the following 8-bit
masks (in hexadecimal):

mask0 = 0x00, mask1 = 0xff, mask2 = 0x0f, mask3 = 0xf0.

Then for any K, we can replace K1,i by K1,i ⊕ maskj for any i = 1, 2, . . . , 4 and
j ∈ {0, 1, 2, 3} and replace K2 by K2 ⊕ d j

2e. Denote this set containing 44 = 28

elements by 〈K〉. We can easily verify that the Walsh coefficients Ĥ′′ of the element
in the set equals by following the definition of convolution between H and H′:

H⊗H′(K) =
∑

K′

H(K ′)H′(K ⊕ K ′). (32)

Since if R ∈ 〈K〉 then R⊕K ′ ∈ 〈K ⊕K ′〉 for all K ′. And H′ maps all the elements
of the same set to the same value from Section 6, we conclude the set defined above
form an equivalent class of the candidate keys. Thus, we have 28 equivalent 33-bit
keys.


