
A Linearization Attak on the Bluetooth KeyStream GeneratorFrederik Armkneht ?University of Mannheim68131 Mannheim, Germanyarmkneht�th.informatik.uni-mannheim.deAbstrat. In this paper we propose an attak on the key stream gen-erator underlying the enryption system E0 used in the Bluetooth spe-i�ation. We show that the initial value an be reovered by solving asystem of nonlinear equations of degree 4 over the �nite �eld GF(2). Thissystem of equations an be transformed by linearization into a system oflinear equations with at most 223:07 unknowns. To our knowledge, thisis the best published attak on the key stream generator underlying theE0 yet.1 IntrodutionThe enryption system E0, whih is the enryption system used in the Blue-tooth spei�ation [1℄, is a two level system. In both levels the same key streamgenerator (KSG) is used. In this paper, we propose an attak on the underlyingKSG. We regard its initial value as the seret key and try to reover it if onlyoutput bits are given. The result of the paper is that this an be done by solvinga system of nonlinear equations (SNE) of degree 4 over the �nite �eld GF(2).This system of equations an be transformed by linearization into a system oflinear equations (SLE) with at most 223:07 unknowns.The paper is strutured as follows. In Setion 2, the E0 key stream generatoris desribed. In Setion 3, we will show how to get for eah lok t a new equa-tion of degree 4 in the unknown initial value bits whih holds with probability1. Solving this SNE provides the initial value of the key stream generator. InSetion 4, we disuss how the system of nonlinear equations an be solved andwhih obstales have to be overome. The attak is ompared to other publishedattaks. Setion 5 onludes the paper.2 Desription of the Bluetooth key stream generatorThe E0 enryption system is used in the Bluetooth spei�ation [1℄ for wirelessommuniation. The enryption is done in two levels. In the �rst level, a key? This work has been supported by grant 620307 of the DFG (German Researh Foun-dation)



2 Frederik Armknehtand a none are given to a key stream generator whih produes the key for theseond level. In the seond level, the same key stream generator uses the seondlevel key to generate the key stream bits whih are XORed to the plaintext bits.In this paper, we will onentrate on the key stream generator (KSG).The KSG onsists of four regularly loked Linear Feedbak Shift Registers(LFSR) and four memory bits. With eah lok, an output bit zt is produeddepending on the outputs at; bt; t and dt of the four LFSRs and the four memorybits (Qt; Pt; Qt�1; Pt�1). Then, the next memory bits Ct+1 := (Qt+1; Pt+1) arealulated and so on. The exat de�nitions arezt = at � bt � t � dt � Pt (1)Ct+1 = St+1 � Ct � T (Ct�1) (2)where T (x1; x0) := (x0; x0 � x1) andSt+1 = (S1t+1;S0t+1) = �at + bt + t + dt + 2Qt + Pt2 � (3)The values for C0 and C1 and the ontents of the LFSR must be set beforethe start, the other values will then be alulated. The LFSRs have the lengthsn1 = 25, n2 = 31, n3 = 33, and n4 = 39, and n = n1+n2+n3+n4 = 128 is thesize of the seret key.3 Building a system of nonlinear equations for the keystream generatorIn this setion, we will show that the initial state of the keystream generator anbe reonstruted by solving a system of nonlinear equations of degree 4. Witheah lok t, the new output zt is produed and the next memory bits Qt+1 andPt+1 are omputed. This is done by the following equations (see Appendix A forthe proof): zt = at � bt � t � dt � Pt (4)Qt+1 = �4(t)��3(t)Pt ��2(t)Qt ��1(t)PtQt �Qt � Pt�1 (5)Pt+1 = �2(t)��1(t)Pt �Qt �Qt�1 � Pt�1 � Pt (6)Here, at; bt; t; dt are the outputs of the four LFSRs and �k(t) is the XOR overall possible produts in fat; bt; t; dtg of degree k. E. g.,�1(t) = at � bt � t � dt�2(t) = atbt � att � atdt � btt � btdt � tdt...If we de�ne the following additional variablesA(t) = �4(t)��3(t)Pt � Pt�1B(t) = �2(t)��1(t)Pt � 1



A Linearization Attak on the Bluetooth Key Stream Generator 3equations (5) and (6) an be rewritten toQt+1 = A(t) �B(t)Qt (7)Pt+1 = B(t)� 1� Pt�1 � Pt �Qt �Qt�1 (8)By multiplying (7) with B(t) we get another equation0 = B(t)(A(t) �Qt �Qt+1) (9)Equation (8) is equivalent toQt �Qt�1 = B(t)� 1� Pt�1 � Pt � Pt+1 (10)Now we insert (10) into (9) with index t+ 1 instead of t and get0 = B(t) (A(t)�B(t+ 1)� 1� Pt � Pt+1 � Pt+2)Using (4) we eliminate all memory bits in the equation and get the followingequation whih holds for every lok t:0 = 1� zt�1 � zt � zt+1 � zt+2��1(t) � (ztzt+2 � ztzt+1 � ztzt�1 � zt�1 � zt+1 � zt+2 � 1)��2(t) � (1� zt�1 � zt � zt+1 � zt+2)��3(t)zt ��4(t)��1(t� 1)��1(t� 1)�1(t)(1� zt)��1(t� 1)�2(t)��1(t+ 1)zt+1 ��1(t+ 1)�1(t)zt+1(1� zt)��1(t+ 1)�2(t)zt+1��2(t+ 1)��2(t+ 1)�1(t)(1� zt)��2(t+ 1)�2(t)��1(t+ 2)��1(t+ 2)�1(t)(1� zt)��1(t+ 2)�2(t)With every lok t we get an additional equation whih holds with probability1. This makes it possible to ompile a system of nonlinear equations degree 4.As the unknowns are just the bits of the initial value of the four LFSRs, theseret key an be reovered by solving the SNE.Remark that in an LFSR all output bits are a linear ombination of the initialvalues bits so the number of possibly ourring terms is limited, the upper boundbeing 17; 440; 047� 223:07 (see appendix B for details). In the following setion,we will disuss how this knowledge an be used to solve the SNE.4 Solving the system of nonlinear equationsWe will now onentrate on the question how to solve the system of nonlinearequations of the previous setion.The simplest method is the so alled linearization algorithm. Assume thata system of nonlinear equations (SNE) with l linearly independent equationsis given. Let T be the number of all di�erent terms ourring in the SNE. Ifwe replae every ourring term by a new variable, we get a system of linearequations (SLE) with T unknowns. If l = T , then the SNE an be solved by



4 Frederik Armknehtthe usual methods. Obviously, the algorithm an be only suessful if enoughlinearly independent equations are present.The maximum number of possibly ourring terms in the SNE isT = 8; 824; 350 � 223:07 (see appendix B for details). The fastest pratialmethod we are aware of to solve a system of linear equations is Strassen's al-gorithm [9℄. It requires about 7 � T log27 operations. In this ase, the seret keyan be reovered with approximately 267:58 operations if at least 223:07 linearlyindependent equations are available. Observe that the system of linear equationsan be onstruted in preomputation time. For eah attak, it is only neessaryto insert the atual values of the key stream bits zt.Note that the best known attak against the E0 was proposed by Krause[6℄ with time e�ort 277, given only 128 known key stream bits. The attak byFluhrer and Luks [5℄ needs about 273 operations if 243 bits are available.Reently, Courtois [3℄ developed an improved version of algebrai attaks:fast algebrai attaks. They allow an even better attak on the E0 keystreamgenerator.Let us fae again the problem how to get enough linearly independent equa-tions. With eah lok t, we get a new equation in the bits of the seret key.Hene, one strategy is to produe new equations until the number of linearlyindependent equations is equal to the number of terms. Obviously, we have tolok at least T times to ahieve this goal. The question is whether we haveto lok more often. Until now, there is no satisfying answer to this question.Our assumption is that approximately T loks should be enough, meaning thatabout 223:07 key stream bits would be suÆient to mount the attak. Tests on-�rmed our assumption for simpler systems of equations. For the future, testswith more E0 like systems of equations are planned.If not enough linearly independent equations are available, improved versionsof linearization may sueed. We give a brief overview over existing methods.In [7℄, Shamir and Kipnis presented the relinearization algorithm for solvinga system of quadrati equations over the �nite �eld GF(2). They expet thatSNEs an be solved with this algorithm even if l is only one �fth of T .The XL algorithm (XL stands for eXtended Linearization), introdued atEurorypt'00 [8℄ by Shamir, Patarin, Courtois and Klimov, an be seen as asimpli�ed and improved version of relinearization. Given a system of nonlinearequations, additional equations (and possibly new terms also) may be gained bymultiplying all equations with all possible monoms of some degree � D. If weare luky we get enough new equations to ahieve l = T . It is an open questionunder whih onditions the XL algorithm is suessful. The authors proved thatXL is as least as powerful as relinearization. Notie that the XL algorithm wasused by Courtois to attak the Toyorypt ipher [2℄.In [4℄, the XSL algorithm, an extension of XL whih uses the sparsity ofSNEs, is introdued by Courtois and Pieprzyk. XSL stands for eXtended SparseLinearization. In the XSL algorithm, we multiply the equations by arefully se-leted monomials. The idea is to use produts of monomials that already appear



A Linearization Attak on the Bluetooth Key Stream Generator 5in the SNE. In their paper, they disuss how the XSL algorithm may be usefulto mount attaks on AES and Serpent.Eah algorithm may be appliable to our SNE. Therefore, we expet that thekey stream generator an be broken with our attak at least in theory. Notiethat all desribed methods have been analyzed only heuristially. Hene, it isneither sure that the E0 system of equations an be solved nor how many keystream bits are neessary. On the other side, there is no proof that the attakfails. We hope that omputer simulations will partly on�rm our assumption.The question if a similar SNE for the whole two level E0 enryption systemexists will be investigated in the future.5 ConlusionWe disussed how the initial value of the key stream generator used in the E0stream ipher an be obtained by solving a system of nonlinear equations ofdegree 4. If enough linearly independent equations are provided, the system anbe solved by simple linearization. As the number of ourring terms is limitedby T � 223:07, the seret key an be reovered in this ase with 267:58 work usingStrassen's algorithm.It is an open question how many keystream bits are needed to get enoughlinearly independent equations. We assume that it should not be muh more thanT but at the moment, meaningful tests are missing. Using better algorithms thanlinearization (e. g. XL, XSL) may redue the number of needed key stream bitssigni�antly.Obviously, the next step is to test whether a similar system of equations anbe found for the whole E0 ipher.AknowledgmentThe author would like to thank Erik Zenner, Stefan Luks and Matthias Krausefor helpful omments and disussions.Referenes1. Bluetooth SIG, Spei�ation of the Bluetooth system, Version 1.1, 1 February 22,2001, available at http://www.bluetooth.om/.2. Niolas Courtois: Higher Order Correlation Attaks, XL Algorithm and Cryptanal-ysis of Toyorypt, http://eprintiar.org/2002/87.ps. To appear in the Proeedingsof ICISC '02, Springer LNCS 2587.3. Niolas Courtois: Fast Algebrai Attaks on Stream Ciphers with Linear Feedbak,Preprint, January 2003, available from the author.4. Niolas Courtois, Josef Pieprzyk: Cryptanalysis of Blok Ciphers with Overde�nedSystems of Equations, Proeedings of Asiarypt '02, Springer LNCS 2501, 2002, pp.267-287.



6 Frederik Armkneht5. Sott R. Fluhrer, Stefan Luks: Analysis of the E0 Enryption System, Proeedingsof Seleted Areas of Cryptography '01, Springer LNCS 2259, 2001, pp. 38-48.6. Matthias Krause: BDD-Based Cryptanalysis of Keystream Generators; Proeedingsof Eurorypt '02, Springer LNCS 2332, 2002, pp. 222-237.7. Adi Shamir, Aviad Kipnis: Cryptanalysis of the HFE Publi Key Cryptosystem;Proeedings of Crypto '99, Springer LNCS 1666, 1999, pp. 19-30.8. Adi Shamir, Jaques Patarin, Niolas Courtois, Alexander Klimov: EÆient Al-gorithms for Solving Overde�ned Systems of Multivariate Polynomial Equations,Proeedings of Eurorypt '00, Springer LNCS 1807, pp. 392-407.9. Volker Strassen: Gaussian Elimination is Not Optimal; Numerishe Mathematik,vol 13, pp 354-356, 1969.A The equations for Qt+1 and Pt+1In this setion we prove the orretness of equations (5) resp. (6) for Qt+1 resp.Pt+1. Let us reall equation (2) for Ct+1Ct+1 = (Qt+1; Pt+1) (11)= St+1 � Ct � T (Ct�1) (12)= (S1t+1 �Qt � Pt�1;S0t+1 � Pt �Qt�1 � Pt�1) (13)where St+1 = (S1t+1;S0t+1) = �at + bt + t + dt + 2Qt + Pt2 � (14)Let f0 resp. f1 be the two boolean funtions for whih the following equationshold Sit+1 = fi(at; bt; t; dt; Qt; Pt) (15)for i 2 f0; 1g. It is easy to �nd f0 and f1 with the help of omputers. If we writedown f0 and f1 in algebrai normal form, we getf1 = �4(t)��3(t)Pt ��2(t)Qt ��1(t)PtQt (16)f0 = �2(t)��1(t)Pt �Qt (17)See setion 3 for the de�nition of �k(t). In table 1 f0 and f1 are evaluated for allpossible inputs and ompared with St+1. It is easy to see that f0 and f1 ful�llthe requirements. Together with (13) we get the following expressions for Qt+1and Pt+1Qt+1 = S1t+1 �Qt � Pt�1 (18)= �4(t)��3(t)Pt ��2(t)Qt ��1(t)PtQt �Qt � Pt�1 (19)Pt+1 = S0t+1 � Pt �Qt�1 � Pt�1 (20)= �2(t)��1(t)Pt �Qt �Qt�1 � Pt � Pt�1 (21)
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Table 1. f0 and f1 evaluated for all possible inputs and ompared with St+1at bt t dt Qt Pt St+1 f1 f0 at bt t dt Qt Pt St+1 f1 f00 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 10 0 0 0 1 0 1 0 1 1 0 0 0 1 0 1 0 10 0 0 0 1 1 1 0 1 1 0 0 0 1 1 2 1 00 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 10 0 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 10 0 0 1 1 0 1 0 1 1 0 0 1 1 0 2 1 00 0 0 1 1 1 2 1 0 1 0 0 1 1 1 2 1 00 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 10 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 10 0 1 0 1 0 1 0 1 1 0 1 0 1 0 2 1 00 0 1 0 1 1 2 1 0 1 0 1 0 1 1 2 1 00 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 10 0 1 1 0 1 1 0 1 1 0 1 1 0 1 2 1 00 0 1 1 1 0 2 1 0 1 0 1 1 1 0 2 1 00 0 1 1 1 1 2 1 0 1 0 1 1 1 1 3 1 10 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 10 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 10 1 0 0 1 0 1 0 1 1 1 0 0 1 0 2 1 00 1 0 0 1 1 2 1 0 1 1 0 0 1 1 2 1 00 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 10 1 0 1 0 1 1 0 1 1 1 0 1 0 1 2 1 00 1 0 1 1 0 2 1 0 1 1 0 1 1 0 2 1 00 1 0 1 1 1 2 1 0 1 1 0 1 1 1 3 1 10 1 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 10 1 1 0 0 1 1 0 1 1 1 1 0 0 1 2 1 00 1 1 0 1 0 2 1 0 1 1 1 0 1 0 2 1 00 1 1 0 1 1 2 1 0 1 1 1 0 1 1 3 1 10 1 1 1 0 0 1 0 1 1 1 1 1 0 0 2 1 00 1 1 1 0 1 2 1 0 1 1 1 1 0 1 2 1 00 1 1 1 1 0 2 1 0 1 1 1 1 1 0 3 1 10 1 1 1 1 1 3 1 1 1 1 1 1 1 1 3 1 1



8 Frederik ArmknehtB The number of termsIn this setion we estimate the maximum number T of di�erent terms in theequations system. With eah lok t the following equation is produed0 = 1� zt�1 � zt � zt+1 � zt+2��1(t) � (ztzt+2 � ztzt+1 � ztzt�1 � zt�1 � zt+1 � zt+2 � 1)��2(t) � (1� zt�1 � zt � zt+1 � zt+2)��3(t)zt ��4(t)��1(t� 1)��1(t� 1)�1(t)(1� zt)��1(t� 1)�2(t)��1(t+ 1)zt+1 ��1(t+ 1)�1(t)zt+1(1� zt)��1(t+ 1)�2(t)zt+1��2(t+ 1)��2(t+ 1)�1(t)(1� zt)��2(t+ 1)�2(t)��1(t+ 2)��1(t+ 2)�1(t)(1� zt)��1(t+ 2)�2(t)As we an see, every ourring term has to be one of the following typesa; b; ; d; ab; a; ad; b; bd; d; ab; ad; abd; bd; abd; aa0b; aa0d; aa0bd; bb0a;bb0d; bb0ad; 0ab; 0ad; 0bd; dd0ab; dd0a; dd0b; aa0bb0; aa00; aa0dd0; bb00; bb0dd0;0dd0; aa0b; aa0; aa0d; bb0a; bb0; bb0d; 0a; 0b; 0d; dd0a; dd0b; dd0; aa0; bb0; 0; dd0Here, a; a0 2 fa1; : : : ; an1g with a 6= a0, et. In table 2 the number of possibleterms for eah type is presented depending on the values n1, n2, n3, and n4.In addition, we give for eah type one produt in whih it an our. Note,that some terms may our in other produts too1. Of ourse, these types haveto be ounted only one. The sum is the number of possible terms T . In E0,it is n1 = 25, n2 = 31, n3 = 33 and n4 = 39, so T = 17; 440; 047, whih isapproximately 223:07.

1 For example, a term of type ab an our in �1(t)�2(t0) and in �2(t)�2(t0)
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Table 2. All possible terms and their number depending on ni := n(i)type our in numbera,b; ; d �1(t) n1 + n2 + n3 + n4ab; a; ad; b; bd; d �2(t) n1(n2 + n3 + n4) + n2(n3 + n4) + n3n4ab; ad; abd; bd �3(t) n1(n2n3 + n2n4 + n3n4) + n2n3n4abd �4(t) n1n2n3n4aa0; bb0; 0; dd0 �1(t) � �1(t0) P4i=1 12ni(ni � 1)aa0b; aa0; aa0d �1(t) � �2(t0) 12n1(n1 � 1)(n2 + n3 + n4)bb0a; bb0; bb0d �1(t) � �2(t0) 12n2(n2 � 1)(n1 + n3 + n4)0a; 0b; 0d �1(t) � �2(t0) 12n3(n3 � 1)(n1 + n2 + n4)dd0a; dd0b; dd0 �1(t) � �2(t0) 12n4(n4 � 1)(n1 + n2 + n3)aa0b; aa0d; aa0bd �2(t) � �2(t0) 12n1(n1 � 1)(n2n3 + n2n4 + n3n4)bb0a; bb0d; bb0ad �2(t) � �2(t0) 12n2(n2 � 1)(n1n3 + n1n4 + n3n4)0ab; 0ad; 0bd �2(t) � �2(t0) 12n3(n3 � 1)(n1n2 + n1n4 + n2n4)dd0ab; dd0a; dd0b �2(t) � �2(t0) 12n4(n4 � 1)(n1n2 + n1n3 + n2n3)aa0bb0; aa00; aa0dd0 �2(t) � �2(t0) 12n1(n1 � 1) �P4i=2 12ni(ni � 1)�bb00; bb0dd0 �2(t) � �2(t0) 14n2(n2 � 1) [n3(n3 � 1) + n4(n4 � 1)℄0dd0 �2(t) � �2(t0) 14n3(n3 � 1)n4(n4 � 1)


