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Abstract— In this paper we analyze the E0 cipher, which
is the encryption system used in the Bluetooth specification.
We suggest a uniform framework for cryptanalysis of the
E0 cipher. Our method requires 128 known bits of the
keystream in order to recover the initial state of the LFSRs,
which reflects the secret key of this encryption engine.
In one setting, our framework reduces to an attack of
D. Bleichenbacher. In another setting, our framework is
equivalent to an attack presented by Fluhrer and Lucks.
Our best attack can recover the initial state of the LFSRs
after solving 286 boolean linear systems of equations, which
is roughly equivalent to the results obtained by Fluhrer and
Lucks.

I. INTRODUCTION

A. Background

Bluetooth is a proposed standard for short range
wireless communication of (potentially mobile) devices,
such as cellular phones, wireless headsets, printers, cars,
and turnstiles, allowing such devices to communicate
with each other. Bluetooth offers methods for generating
keys, authenticating users, and encrypting data.

The data encryption mechanism of the Bluetooth stan-
dard is a stream cipher that is generated by an LFSRs1-
based keystream generator, E0, and XORed with the
plaintext. E0 is a relatively new LFSR-based cipher,
which comprises of 4 LFSRs of different lengths, which
are combined by non-linear combiner logic.

A Bluetooth device resets the E0 key after every
240 output bits, severely limiting the amount of known
keystream that may be available to the cryptanalyst. In
this paper we focus on “short key” attacks, that still
manage to recover the key despite this limitation.

B. Related work

Several crypt-analytical results regarding E0

([1],[2],[3],[4],[5],[6],[7],[8]) have appeared over
past years. We distinguish between two types of attacks:
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“short key” attacks, that need at most 240 known
keystream bits and are applicable in the Bluetooth
setting; and “long key” attacks, that are applicable only
if the E0 cipher is used outside the Bluetooth mode of
operation.

1) Short Key Attacks: D. Bleichenbacher has shown
in [1] that an attacker can guess the content of the
registers of the three smaller LFSRs and of the E0

combiner state registers with a probability of 2−93. Then
the attacker can compute the the contents of the largest
LFSR (of length 39 bit) by “reverse engineering” it
from the outputs of the other LFSRs and the combiner
states. This attack requires a total of 128 bits of known
plaintext and ciphertext. The reverse engineering and
verification takes approximately 27 operations. making
the total complexity of the attack 2100.

Fluhrer and Lucks have described in [3] an optimized
backtracking method of recovering the secret key with
a computational complexity of about 284, which can be
reduced to 273 if a long (243 bit) keystream is available.

Currently, the best short-key attack against E0 has
been suggested by Krause [5]. His attack uses Free
Binary Decision Diagrams (FBDDs), a data structure
for minimizing and manipulating boolean functions, for
attacking LFSR-based key stream generators. The attack
requires O((277) space. For a fixed initial state of the
combiner the attack uses O(277) time, giving a total time
complexity of O(281).

2) Long Key Attacks: Saarinen has showed an attack
[9] that recovers the session key in a similar way to
what D. Bleichenbacher showed in his attack, only that
Saarinen assumed much more keystream is available
within a packet and therefore the overall complexity was
closer to O(293).

Ekdahl and Johansson have shown in [6] a method of
reconstructing the initial state of the E0 keystream gen-
erator given O(261) work and O(250) known keystream.
This attack works by exploiting some weak linear cor-
relations between the outputs of the LFSRs and the
keystream output to verify if a guess on one of the LFSRs
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is accurate. Previous to that, Hermelin and Nyberg
published in [10] an attack with recovered initial state
with O(264) work and O(264) known keystream bits.
These are theoretical attacks since they require a far
larger amount of consecutive keystream output than is
available in a Bluetooth frame.

Golić, Bagini and Morgani show in [7] the recovery
of the secret key, with O(270) work, along with a pre-
computation stage of complexity O(280). They show
in their work how to recover the level 2 internal state
for a single packet with O(264) work, using linear
correlations between the internal LFSR state and the
observed keystream.

Currently, the best long-key attack against E0 is by Lu
and Vaudenay [8]. Their attack is a fast correlation at-
tack, and works in O(239) time given O(239) keystream
bits.

Shaked and Wool [11] have recently shown an efficient
brute force attack against the Bluetooth authentication
and key negotiation protocol, that relies on the fact
that manufacturers limit the length of the secret PIN to
inadequately short lengths (4 decimal digits is typical).

C. Contribution

In this paper we introduce a uniform framework for
the derivation of the initial state of the LFSRs of the E0

cipher. Our attacks can be viewed as a generalization
of Bleichenbacher’s attack [1] and Fluhrer and Lucks
attack [3]: guessing the initial states of some of the
LFSRs, backtracking through the different possible
states of the Combiner logic, solving sets of linear
equations, and checking for consistency with the given
output stream cipher. Our best attack can recover the
initial state of the LFSRs after solving 285.38 boolean
linear systems of equations, which is roughly equivalent
to the results obtained by Fluhrer and Lucks.

Organization This paper is organized as follows: In
section II , a description of the E0 cipher is given. In
section III a structured analysis of the Combiner logic is
described. In section IV we present the basic method
of our framework, including theoretical analysis and
simulations. Sections V and VI describe some variants of
our cryptanalysis framework, and Section VII concludes
the work.

II. THE E0 CIPHER

A detailed specification of Bluetooth security mech-
anisms can be found in part H of Vol 2 of [12]. In
the Bluetooth system, the security layer is one of the
baseband layers, which the upper layers control. The

Fig. 1. Functional description of the encryption procedure.

security layer includes key management, key genera-
tion mechanisms, user/device authentication, and data
encryption. The data encryption engine used within the
Bluetooth security architecture is the E0 key stream
generator.

When two Bluetooth devices need to communicate
securely, they first undergo an authentication and key
exchange protocol that completes with each unit agreeing
on a shared secret (the link key), which is used to gener-
ate the encryption key (KC). The encryption key (KC)
is derived from the current link key, a ciphering offset
number (COF), that is known from the authentication
procedure done prior to the encryption phase, and a
public known random number (EN RAND). To encrypt
a packet, this private key (KC) is modified into another
key denoted as K ′

C . Then K ′

C is used in a linear manner,
along with the publicly known values, the master device
Bluetooth address, and a clock, which is distinct for each
packet, to form the initial state for a two level keystream
generator (see Figure 1). The encryption algorithm E0

generates a binary keystream, Kcipher, which is XORed
with the plain text. The cipher is symmetric; decryption
is performed in exactly the same way using the same
key as used for encryption.

The E0 keystream generator consists of 4 LFSRs with
a total length of 128 bits, and a 4 bit finite state machine
(called the Summation Combiner Logic and Blend). At
each clock tick all LFSRs are clocked once, and their
output bits are XORed together with one output bit of the
finite state machine to produce the keystream bit. Then,
the 4 LFSR’s output bits are summed together. The two
most significant bits of this 3 bit sum are used to update
the state of the finite state machine. Table I describes the
four feedback polynomials of the LFSRs, and Figure 2
describes the E0 keystream generator engine concept.

Formally, let xi
t denote the tth symbol of LFSRi.
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LFSR LFSR LFSR Feedback Hamming
Number Length Polynomial Weight
1 25 t25 + t20 + t12 + t8 + 1 5
2 31 t31 + t24 + t16 + t12 + 1 5
3 33 t33 + t28 + t24 + t4 + 1 5
4 39 t39 + t36 + t28 + t4 + 1 5

TABLE I
THE FOUR PRIMITIVE FEEDBACK POLYNOMIALS.

Fig. 2. E0 keystream generator engine concept.

From the four-tuple x1
t , x

2
t , x

3
t , x

4
t we derive the value yt

as follows:

yt =
4
∑

i=1

xi
t , (1)

where the sum is over the integers. Thus yt can take the
values 0,1,2,3,4. The Summation Combiner uses 4 state
bits, denoted c1

t , c
0
t , c

1
t−1, c

0
t−1. The output of the SCLB2

at time t (i.e., the output keystream bit) is given by the
following equation:

zt = x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t ⊕ c0
t . (2)

The intermediate value of the SCLB, St+1, as de-
scribed in Figure 2, is defined by:

st+1 =

[

s0
t+1

s1
t+1

]

=

⌊

yt + ct

2

⌋

∈ {0, 1, 2, 3} . (3)

ct is the value of (c0
t , c

1
t ) viewed as an integer in [0, 3].

ct+1 =

[

c0
t+1

c1
t+1

]

= st+1 ⊕ T1[ct] ⊕ T2[ct−1] , (4)

where T1[.] and T2[.] are two different linear bijections
over GF (4). The mapping T1 and T2 are defined as
described in Table II.

The mappings are linear, and therefore can be realized
using XOR gates; i.e.,
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x T1[x] T2[x]

00 00 00
01 01 11
10 10 01
11 11 10

TABLE II
T1 AND T2 LINEAR BIJECTIONS.

T1 : (x1, x0) 7→ (x1, x0),
T2 : (x1, x0) 7→ (x0, x1 ⊕ x0),

The keystream generator needs to be loaded with an
initial value for the four LFSRs (128 bits in total) and
the 4 bits that specify the values of ct and ct−1. During
the initialization phase these 4 bits are zeroed. The
128-bit initial value of the LFSRs is derived from four
inputs by using the keystream generator itself. The input
parameters are the secret key (Kc), a 128-bit random
number (RAND), a 48-bit Bluetooth address, and the
26 master clock bits (CLK26−1).

When the encryption key has been created, the LFSRs
are loaded with their initial values. Then, 200 stream
cipher bits are created by operating the generator. Of
these bits, the last 128 are fed back in parallel into
the keystream generator as an initial value of the four
LFSRs. The value of ct and ct−1 are kept. From this point
on, when clocked, the generator produces the encryption
(or decryption) sequence, which is XORed with the
transmitted (or received) payload data. For a detailed
description of the encryption process refer to [12],[13].

III. STRUCTURAL ANALYSIS OF THE SUMMATION
COMBINER LOGIC AND BLEND

In this section we will describe the work that we did
in defining a uniform framework for the cryptanalysis of
the E0 cipher. We will view the SCLB as a finite state
machine that has four input bits (x1

t , x
2
t , x

3
t , x

4
t ), four bits

that define its state (c1
t , c

0
t , c

1
t−1, c

0
t−1) and one output bit

(Zt). For each clock of the LFSRs, 4 new input bits (the
output of the LFSRs) enter the state machine, the state
machine transfers to its next state and 1 output bit is
produced.

A. The SCLB as a Finite State Machine

By running the SCLB over all possible inputs (4 input
bits) and over the different states (4 bits states), we
computed a 16x16 table that defines the output bit and
the next state, for each possible state and each valid
input value: a simple (input,state)⇒(output,next state)
state machine table (see Table III).
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We observe that the state machine is only dependent
on the current state and on the sum of input bits (and not
on the different values of the input bits). This observation
allows us to reduce Table III into a 16 states x 5 sums
table, in which each cell holds the next state and the
output bit that is received for the relevant current state
and sum of input bits. A similar observation was made
in [8].

Looking at Table III, we can see that each row in
the table holds exactly 3 possible next states (and not
5). Moreover, in each row, two next-states correspond to
one output bit value, and three next-states correspond to
the other output bit value. Therefore, we arranged the
information in a different form. We gathered all of the
sums that generate an output bit Zt = 0 in one column,
and all of the sums that generate an output bit Zt = 1 in
another column, and created a table F (q, z): for a 4 bit
state q and an output bit z, F (q, z) contains either 2 or 3
tuples of (sum, next state). F (q, z) appears in Table IV.
Notice that for each state, exactly 3 sums produce the
bit value z, and 2 sums produce z.

Our attack is based on these findings; If we assume
to know the current state of the SCLB, and the current
output bit, then:

1) There are either 2 or 3 possible next-states.
2) For each such next-state we can derive linear

equations on the LFSRs initial state bits.

IV. THE BASIC METHOD

A. Chains

Definition 4.1: Let Z = z1, . . . , zT be an output
sequence of E0, and denote the initial state of the SCLB
by q0 ∈ [0, 15]. A chain for Z is a sequence a1, . . . , aT

of values at ∈ {0, 1, 2, 3, 4}, such that for each t,

at = F (qt−1, zt).sum[i] for i ∈ {0, 1, 2} , (5)

and

qt = F (qt−1, zt).NextState[i] for the same i . (6)

During the backtracking phase we produce a set of
chains. For each chain we wish to get 128 binary linear
equations of 128 unknown bits of the initial state. Solv-
ing this linear equation will supply an initial state of the
LFSRs, that should be tested to be the initial state. Table
IV allows us to move from one state to another according
to the sum of the input bits and the known output. In each
cell of the state machine table we can see that either 2
or 3 options are possible. Given T known output bits,
we will guess an initial state q0 = [c1

t , c
0
t , c

1
t−1, c

0
t−1] of

the state machine. For each position in the range [1, T ]
we guess the sum of input bits, yt =

∑4
i=1 xi

t, out of the

possible sum values according to the F (q, z) table, for
the given output bit. We receive a chain of T sums that
we have guessed. Each guess will lead us to the next
state, and according to the next output bit we may guess
the next sum. Note that the chains need not be all of the
same length.

B. The linear equations

For each sum, we always get one linear equation,
based on the parity of the sum:

x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t = c0
t ⊕ zt , (7)

where zt is known and c0
t is extracted from the state

machine. However, depending on the guessed sum value,
we may be able to write additional equations. For a guess
of yt = 0 or yt = 4 we get 4 linear equations.

For a sum of yt = 0 we have:

x1
t = 0 , x2

t = 0 , x3
t = 0 , x4

t = 0

and for a sum of yt = 4 we have:

x1
t = 1 , x2

t = 1 , x3
t = 1 , x4

t = 1

Note that the basic parity equation is linearly depen-
dent on the 4 equations.

For a guess of yt = 1 or yt = 3 we get 4 different
options of 4 linear equations each. Thus we have two
possible strategies in the backtracking process: (1) for
each sum of 1 or 3, try all 4 options, each giving
4 equations, or (2) only use the basic parity equation
(Equation 7).

For a guess of yt = 2 we have 6 different options of
4 linear equations each.

Obviously, a sum of 0 or 4 is very cheap in terms
of backtracking cost, since we receive 4 equations for 1
output bit. However, on average only 2/5 of the sums in
a chain fall into the category. A sum of 1 or 3 costs us
4 possibilities and each will supply 4 equations. A sum
of 2, which is the most expensive option, will supply
6 possibilities and 4 equations each. Therefore, in our
backtracking process whenever we guess a sum of 2, we
use only the basic parity equation.

In general, the goal is to go over all of the possible
chains for the given output bit stream. Each chain ends
when 128 equations are obtained. For each chain we
solve a boolean linear system, that gives us the initial
state of the LFSRs. Then we check if this solution is
consistent with all of the given output keystream. We as-
sume that we can use a hardware module that efficiently
solves a linear system of 128 boolean equations of 128
boolean unknowns, therefore we count the computational
complexity for such a step as O(1).
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Input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
State

0 Output bit 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
Next state 0 0 0 4 0 4 4 4 0 4 4 4 4 4 4 8

1 Output bit 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
Next state 12 12 12 8 12 8 8 8 12 8 8 8 8 8 8 4

2 Output bit 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
Next state 4 4 4 0 4 0 0 0 4 0 0 0 0 0 0 12

3 Output bit 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
Next state 8 8 8 12 8 12 12 12 8 12 12 12 12 12 12 0

4 Output bit 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
Next state 5 1 1 1 1 1 1 13 1 1 1 13 1 13 13 13

5 Output bit 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
Next state 9 13 13 13 13 13 13 1 13 13 13 1 13 1 1 1

6 Output bit 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
Next state 1 5 5 5 5 5 5 9 5 5 5 9 5 9 9 9

7 Output bit 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
Next state 13 9 9 9 9 9 9 5 9 9 9 5 9 5 5 5

8 Output bit 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
Next state 14 14 14 2 14 2 2 2 14 2 2 2 2 2 2 6

9 Output bit 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
Next state 2 2 2 14 2 14 14 14 2 14 14 14 14 14 14 10

10 Output bit 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
Next state 10 10 10 6 10 6 6 6 10 6 6 6 6 6 6 2

11 Output bit 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
Next state 6 6 6 10 6 10 10 10 6 10 10 10 10 10 10 14

12 Output bit 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
Next state 11 7 7 7 7 7 7 3 7 7 7 3 7 3 3 3

13 Output bit 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
Next state 7 11 11 11 11 11 11 15 11 11 11 15 11 15 15 15

14 Output bit 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
Next state 15 3 3 3 3 3 3 7 3 3 3 7 3 7 7 7

15 Output bit 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
Next state 3 15 15 15 15 15 15 11 15 15 15 11 15 11 11 11

TABLE III
THE 16X16 SCLB STATE MACHINE TABLE.

The state and next state are shown as decimate integer in [0,15].
The 4 state bits are (c1

t , c
0
t , c

1
t−1, c

0
t−1), with c1

t as the MSB.

Output bit 0 1 Output bit 0 1
State Sum Next State Sum Next State State Sum Next State Sum Next State

0 0 0 1 0 8 0 14 1 14
2 4 3 4 2 2 3 2
4 8 4 6

1 0 12 1 12 9 0 2 1 2
2 8 3 8 2 14 3 14
4 4 4 10

2 0 4 1 4 10 0 10 1 10
2 0 3 0 2 6 3 6
4 12 4 2

3 0 8 1 4 11 0 6 1 6
2 12 3 0 2 10 3 10
4 0 4 14

4 1 1 0 5 12 1 7 0 11
3 13 2 1 3 3 2 7

4 13 4 3
5 1 13 0 9 13 1 11 0 7

3 1 2 13 3 15 2 11
4 1 4 15

6 1 5 0 1 14 1 3 0 15
3 9 2 5 3 7 2 3

4 9 4 7
7 1 9 0 13 15 1 15 0 3

3 5 2 9 3 11 2 15
4 5 4 11

TABLE IV
SCLB STRUCTURE REARRANGEMENT, F (q, z).
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C. Estimated number of chains

We first estimate the number of chains we need to
backtrack over. From Table IV it can be seen that in each
step of the backtracking process, there are either 2 or 3
next states, and that for either value of the output zt, the
number of next states is distributed uniformly. Therefore,
we can model these possibilities as a random choice
and assume that with probability 1/2 there are 2 next
states, and with probability 1/2 there are 3. Therefore
we can recursively calculate the number of chains in the
backtracking process W (T ) for each additional output
bit:

W (t) =
1

2
·2W (t−1)+

1

2
·3W (t−1) =

5

2
·W (t−1) (8)

and so, if we backtrack to the depth of T we get

W (t = T ) =

(

5

2

)T

(9)

chains.

D. Estimated backtracking chain lengths

Next, we would like to estimate the average length of
the backtracking chains that are required. The lengths of
the chains are calculated out of the number of equations
that we receive from the process. Let N(t) denote the
expected number of equations that we have obtained
using t output bits.

1) Using sums 0,1,3,4: Using the backtracking
method from the previous section, we always get 1 equa-
tion for every output bit. We get 3 additional equations
per a sum of 0/1/3/4. In the enumeration space we
backtrack through all possibilities, so the 5 values of
the sum yt are uniformly distributed, and therefore the
probability of each sum is 1/5. Hence, the probability
of having a sum of 0/1/3/4 is 4/5.

Now we can define the expectation of the number
of equations through a recursive equation, by adding
another output bit in each step, and derive the expected
length of the backtracking chains:

N(t) = N(t − 1) + 1 +
4

5
· 3 = N(t − 1) +

17

5
. (10)

So for a backtracking depth of T , we get, on average,

N(T ) =
17

5
· T (11)

equations.
Since the requirement is to have a sufficient number of
equations (more than 128), we get a bound on the depth
T :

N(T ) =
17

5
· T ≥ 128 (12)

=⇒ T ≥
128 · 5

17
= 37.64 , (13)

Note that the minimum number of equations is 39 (the
size of the largest LFSR) so all variables appear in the
set of equations, and therefore, this will be the estimate.

2) Using only sums 0,4: Similarly, for the other
strategy, in which the default parity equation is counted
for a sum of 1 or 3, we received the following results:
Each sum contributes 1 equation (the default one) and
only a sum of 0 or 4 contributes 3 additional equations.
As previously explained, the probability for a sum of 0
or 4 will be in this case 2/5.

N(t) = N(t − 1) + 1 +
2

5
· 3 = N(t − 1) +

11

5
. (14)

The recursive function can be translated into a linear one,
giving us a bound on the depth T :

N(T ) =
11

5
· T ≥ 128 (15)

=⇒ T ≥
128 · 5

11
= 58.15 . (16)

Thus, in this case the estimated depth of the backtracking
chains is 59.

E. Computational complexity of the backtracking pro-
cess

Finally, we estimate the number of linear systems that
should be solved during the process. Let T denote the
number of required output bits (the length of the chains).
For this estimate, we are assuming that all of the chains
have the same length. Assume that R positions out of the
total T positions in a chain hold the sums of 0/1/3/4. The
other T − R positions hold sum of 2. Note that among
the positions t ∈ R, we have that

Pr{yt = 0 or 4} =
1

2
∀t ∈ R (17)

Pr{yt = 1 or 3} =
1

2
∀t ∈ R . (18)

For a sum of 0 or 4, there is only one option to backtrack
through. For a sum of 1 or 3 there are 4 options to
backtrack through. Therefore, going over all possible
combinations of sums in R, the expected number of
linear equations systems that should be solved per chain
can be estimated as,
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E =
R
∑

i=0

(

R
i

)

(

1

2

)i (1

2

)R−i

· 1i · 4R−i =

1

2R

R
∑

i=0

(

R
i

)

4R−i · 1i =
1

2R
(4 + 1)R =

(

5

2

)R

(19)

i.e., for R positions we have (2.5)R systems to solve.
Combining the above estimates, we can calculate the

total number of linear systems that should be solved.
As seen in previous subsection the number of chains is
(5/2)T . For each output bit we have 1 default equation
(parity equation) and for R bits out of the T bits we
have 3 additional equations. By equation (19), for each
chain we have (5/2)R equations to solve. We require
128 equations in order to solve the LFSRs initial state.
Therefore, our constraint is: T + 3R ≥ 128 → R =
(128 − T )/3.

Hence, estimated total number of equations to solve
is:

(

5

2

)T

·

(

5

2

)R

=

(

5

2

)T+R

=

(

5

2

)T+ 128−T

3

For a minimal T we chose T = 39 (the size of the
largest LFSR) and we get the estimation for the total
number of linear systems that should be solved: 290.63.
For the total computational complexity we should add
the initial state 4 bit which brings to a total complexity
of 294.63.

F. Simulations

The analysis in the previous sections was somewhat
inaccurate, since we assumed that all the chains are of
equal length, which we estimated as an expectation. To
validate these calculations we performed simulations.
The simulations ran on a Pentium 4 processor with
256Mbyte of RAM. We examined the strategy of adding
4 options to a guess of a sum=1 or 3. As we ran the
simulation, we calculated the computational effort for
increasing values of T , and extrapolated the results to a
system of 128 equations. From the simulations that we
did, the computational complexity was extrapolated to be
291.93 (close to the estimation above) for enumerating the
total tree, solving 1 boolean linear equations system for
each chain that supplies 128 equations of 128 unknowns.
In addition there are 4 initial state bits that should
be guessed (which costs 24). This brings us to a total
computational complexity of 295.93. This is significantly
worse than the result of Fluhrer and Lucks [3].

V. GUESSING A SINGLE REGISTER

In this phase of our framework we tried to reduce the
computational complexity by guessing the contents of
the first (shortest) LFSR, and implementing a similar
process but with shorter chains in the backtracking
analysis process.

Assuming that the first LFSR is guessed (which costs
us 225 operations), we can create a process similar to that
described in Section IV, and is based on both the output
bit and the guessed LFSR1 bit. We built a table similar
to Table IV that holds the sum and next state for a given
output bit, current state and a guessed bit of LFSR1.
The possible sums in the table are 0/1/2/3 (we have 1 bit
less). Considering the fact that the first LFSR is guessed
then the number of unknowns is 128 − LFSR1 = 103.
This means that only 103 equations are required, and the
boolean linear system to be solved is of a size of 103
equations and unknowns. The parity equation now looks
like this:

x2
t ⊕ x3

t ⊕ x4
t = c0

t ⊕ zt ⊕ x1
t , (20)

where x1
t is the guessed bit of the LFSR1 at time t.

Let

y′t =
4
∑

i=2

xi
t . (21)

For a guessed sum of y′t = 0 or 3 we get 3 equations.
For a sum of y′t = 1 or 2 we have 3 different options of
3 linear equations each, as follows. For a sum of 1 we
get:

x2
t = 1 x2

t = 0 x2
t = 0

x3
t = 0 or x3

t = 1 or x3
t = 0

x4
t = 0 x4

t = 0 x4
t = 1,

and for a sum of 2 we get:

x2
t = 0 x2

t = 1 x2
t = 1

x3
t = 1 or x3

t = 0 or x3
t = 1

x4
t = 1 x4

t = 1 x4
t = 0.

A. Simulations

In order to estimate the complexity of this method, we
modified the simulation from the previous section. As
explained in the previous section, in some of the chains
there are 3 options to be examined (for sum =1 or 2) and
therefore in each such step the computational complexity
is increased by a factor of 3. In the enumeration space
there is a uniform distribution of sums, and therefore in
50% of the positions we will have the sum of 1 or 2.
We examined the 3 possible strategies for dealing with
sums of y′t = 1 or 2.
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a) Strategy 1: Backtracking through 3 options of 3
equations each. This option actually runs though all of
the possible chains that exists in the tree. All options of
chains are backtracked through, with no complexity re-
duction (as done in previous method). Thus, this strategy
is equivalent to a full brute force attack.

b) Strategy 2: Using only the parity equation for a
sum of 1 or 2. The simulation shows that using this Strat-
egy, the computational complexity of backtracking the
entire tree for achieving 103 equations of 103 unknowns,
is approximately 257.68 operations. Adding to this the
guessed LFSR1 bits and the initial state bits brings us to
257.68 ·225·24 = 286.68 operations. This solution brings us
quite close to the computational complexity that Fluhrer
and Lucks received in [3].

c) Strategy 3: (Backtracking through 3 options for
sum=1). This option was investigated and was found
to be less efficient than strategy 2: we found that
the number of operations is 265.5, which gives a total
computational complexity of 294.5.

VI. GUESSING MORE THAN ONE REGISTER

A. Guessing two registers

Assuming that the first and the second LFSRs are
guessed (which costs us 256 operations) we can create
a similar backtracking process, based on the output bit
and the guessed bits of LFSR1 and LFSR2. Using this
method, we have possible sums of 0/1/2. Furthermore,
the number of unknowns is 128−(LFSR1+LFSR2) =
72. This means the boolean linear system to be solved is
of size of 72 equations and unknowns. In this case the
parity equation is: x3

t ⊕x4
t = c0

t ⊕zt⊕x1
t ⊕x2

t , where x1
t

and x2
t are the guessed bits of the LFSR1 and LFSR2

at time t, respectively. Let

y′′t =
4
∑

i=3

xi
t . (22)

Then, for y′′t = 0 or 2 we get 2 equations. For a sum of
0 we get

x3
t = 0

x4
t = 0,

and for a sum of 2 we get:

x3
t = 1

x4
t = 1.

For y′′t = 1 we get 2 options of 2 equations each.
A sum of 0 or 2 is cheap in terms of backtracking cost,

since we receive 2 equations for 1 output bit. A sum of 1
costs us 2 possibilities and each will supply 2 equations,
so we only use the parity equation. This is, effectively,
the method used by Fluhrer and Lucks in [3].

B. Simulations

We have performed simulations in order to calculate
the computation complexity of the suggested backtrack-
ing method in this subsection. In 1/3 of the locations
we have a sum of 1, giving 1 equation only, for such a
location. The results show that computational complexity
of backtracking the whole tree for achieving 72 equations
of 72 unknowns, is approximately 225.38 operations.
Adding to this the guessed LFSR1 and LFSR2 bits and
the initial state bits brings us to 225.38 · 256 · 24 = 285.38

operations, which agrees with the result of Fluhrer and
Lucks [3].

C. Guessing three registers

Completing the uniform framework that was described
in this work, leads us to the last method of guessing 3
registers and backtracking through a single register. This
is the exact case that D. Bleichenbacher used in [1] as
described in Section I-B.

VII. CONCLUSIONS

We have presented a uniform framework for short-key
cryptanalysis of the E0 cipher, based on a backtracking
process in the enumeration space of the different states of
the Summation Combiner Logic and Blend unit. During
the analysis we used the fact that the input to the state
machine is based on the sum of input bits and not on the
value of the bits themselves. Furthermore, after revising
the state machine table we found that depending on the
input bit, each state can advance to only 2 or 3 next
states (and not to all 16 states). These properties allowed
a relatively efficient backtracking process through the
enumeration space. We identified several variants of the
general method, two of which are equivalent to the
attacks of Bleichenbacher [1] and of Fluhrer and Lucks
[3]. The variant with the best performance in terms of
computational complexity achieved about O(286) oper-
ations, with no significant memory requirements. We
believe that we have explored this framework to its
limits, and that faster attacks may be possible only if
other techniques are used, such as the BDD methods of
Krause [5].
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