
Analysis of the E0 Enryption SystemSott R. Fluhrer1 and Stefan Luks21 Ciso Systems, In.170 West Tasman Drive, San Jose, CA 95134sfluhrer�iso.om2 University of Mannheim68131 Mannheim, Germanyluks�th.informatik.uni-mannheim.deAbstrat. The enryption system E0, whih is the enryption systemused in the Bluetooth spei�ation, is examined. In the urrent paper,a method of deriving the ipher key from a set of known keystream bitsis given. The running time for this method depends on the amount ofknown keystream available, varying from O(284) if 132 bits are availableto O(273), given 243 bits of known keystream.Although the attaks are of no advantage if E0 is used with the re-ommended seurity parameters (64 bit enryption key), they provide anupper bound on the amount of seurity that would be made available byenlarging the enryption key, as disussed in the Bluetooth spei�ation.1 IntrodutionWe give algorithms for deriving the initial state of the keystream generatorused within E0 given some bits of keystream with less e�ort than exhaustivesearh. From this, we derive a method for reonstruting the session enryptionkey used by E0 based on some amount of keystream output. E0 uses a two levelrekeying mehanism, using the key to initialialize the level 1 keystream generatorto produe the initial state for the level 2 keystream generator, whih produesthe atual keystream used to enrypt the data.We use a known keystream to reonstrut the initial state for the level 2keystream generator, whih we then use to reonstrut the initial state for thelevel 1 keystream generator, from whih we an diretly dedue the enryptionkey. Reonstruting the state of the level 2 keystream generator takes an ex-peted O(276) to O(284) work e�ort (based on the amount of known keystreamavailable). Another attak with even more keystream available takes O(272)work.By reonstruting the state from either 1 or 2 pakets that are enryptedduring the same session, we an reonstrut the state of the level 1 keystreamgenerator in an expeted O(281) or O(251) time, whih gives a total of O(273)to O(284) work e�ort.This paper is strutured as follows. In Setion 2, the E0 keystream genera-tor, and how it is used within the Bluetooth system is desribed. In Setion 3,



previous analysis and results are summarized. Setion 4 presents our base attakagainst the keystream generator, Setion 5 desribes how to use it against thelevel 2 generator. Setion 6 deals with another approah to attak the keystreamgenerator and the seond level, if a huge amount of known keystream is available.Setion 7 desribes the basi attak on the �rst level of E0 , given one state ofthe level 2 generator, while Setion 2 deals with an attak given two suh states.Setion 9 omments on attaking the full E0 system. Setion 10 onludes anddisusses the rami�ations on the Bluetooth system.2 Desription of E0E0 is an enryption protool that was designed to provide privay within theBluetooth wireless LAN spei�ation. When two Bluetooth devies need to om-muniate seurely, they �rst undergo a key exhange protool that ompleteswith eah unit agreeing on a shared seret, whih is used to generate the en-ryption key (KC). To enrypt a paket, this private key (KC) is ombined witha publily known salt value (EN RAND) to form an intermediate key (K 0C)1.Then, K 0C is used in a linear manner, along with the publily known values, theBluetooth address, and a lok whih is distint for eah paket, to form theinitial state for a two level keystream generator.The keystream generator onsists of 4 LFSRs with a total length of 128 bits,and a 4 bit �nite state mahine, refered to as the blender FSM. For eah bitof output, eah LFSR is loked one, and their output bits are exlusive-or'edtogether with one bit of output from the �nite state mahine. Then, the 4 LFSRoutputs are summed together. The two most signi�ant bits of this 3-bit sumare used to update the state of the �nite state mahine. We will refer to the 25bit LFSR as LFSR1, the 31 bit LFSR as LFSR2, the 33 bit LFSR as LFSR3 andthe 39 bit LFSR as LFSR4. We will also refer to the �nite state mahine as theblender FSM. The generator is shown in Figure 1. Note that the least signi�antbit (LSB) of the sum of the four LFSRs is their bit-wise XOR.
����

HHj-��*��� ?? ��R-����?����? -AddLFSR3 Blender (XOR)MSB LSBLFSR4LFSR2LFSR1
Fig. 1. The E0 keystream generator.1 The attaks in the urrent paper atually provide the value of K0C .



There are logially two suh keystream generators. The key of the �rst levelkeystream generator is shifted into the LFSRs, while learing the blender FSM.Then, 200 bits are generated and disarded. Then, the output of this keystreamgenerator is olleted, and is used to initialize the LSFRs of what we all theseond level keystream generator, whih is struturally idential to the �rst levelkeystream generator. This initialization is done by olleting 128 output bits,parallel loading them into the LSFRs, and making the initial seond level FSMstate be the �nal �rst level FSM state.This output of this seond generator is then used as an additive stream ipherto enrypt the paket.3 Desription of Previous WorkIn a si.rypt.researh posting [6℄, Markku-Juhani O. Saarinen showed an attakthat rederived the session key. This attak onsisted of guessing the states of the3 smaller LFSRs and the blender FSM, and using those states and the observedkeystream to ompute whether there is a onsistent output from LFSR4 that isonsistent with that assumption.In the original posting, he estimated the attak to have overall omplexityof O(2100). However, he assumed that only 125 bits of keystream were available,and so he assumed a signi�ant amount of time would be spent heking falsehits. Sine signi�antly more keystream is available within a paket, the trueomplexity is loser to O(293) expeted.Our attaks an be viewed as re�nements of Saarinen's attak by takingthe same basi approah of guessing the initial states of part of the ipher,and heking for onsisteny. However, our attaks take advantage of additionalrelationships within E0 and use them to gain some performane.Ekdahl and Johansson have shown in [2℄ how to extrat the initial statefrom the keystream generator used in E0 given O(261) time and O(250) knownkeystream. Their attak works by exploiting some weak linear orrelations be-tween the outputs of the LFSRs and the keystream output to verify if a guess onone of the LFSRs is aurate. Previous to that, Hermelin and Nyberg publishedin [4℄ an attak whih reovered the initial state with O(264) work and O(264)known keystream. However, these are theoretial attaks as they require a farlarger amount of onseutive keystream output than is available.A time-spaes tradeo� attak has been desribed by Jakobsson and Wetzel[5℄. Given N key streams and running time T , it is possible to reover one ofthe N keys if N �T > 2132. A similar attak on the A5 keystream generator hasbeen previously desribed by Goli [3℄.Our attaks resemble a general type of attak, the linear onsisteny attak,whih has been desribed as early as 1989 by Zeng, Yang, and Rao [7℄.



4 Base Attak on the E0 Keystream GeneratorThe base attak rederives the initial settings of the LFSRs, given a limited(132 or so bits) keystream output. We will later show how this attak an beseparately optimized for both levels of the keystream generators. For this attak,you assume the initial settings of the blender FSM and the ontents of LFSR1and LFSR2, and maintain for eah state the urrent settings of the blenderFSM, and a set L of linear equations on the LFSR3 and LFSR4 output bits.We will refer to those output bits as LFSR3n and LFSR4n.First, you initialize the set L to empty. Then, you perform the below depth-�rst searh:1. Call the state we are examining n. Compute the exlusive-or of the outputn of LFSR1 and LFSR2, the next output of the blender FSM (based onthe urrent state), and the known keystream bit Zn. If our assumptions areorret to this point, this must be equal to the exlusive-or of the outputsof LFSR3 and LFSR4.2. If the exlusive-or is zero, then we branh and onsider the ases that bothLFSR3 and LFSR4 output a zero here, and that they both output a one.When we assume a zero, we inlude in L the two linear equations LFSR3n =0 and LFSR4n = 0, and when we assume a one, we inlude in L the twolinear equations LFSR3n = 1 and LFSR4n = 1.3. If the exlusive-or is one, then we inlude in L the single linear equationLFSR3n 6= LFSR4n4. If n � 33, then we inlude in L the linear equation implied by the LFSR3tap equations. If n � 39, then we inlude in L the linear equation impliedby the LFSR4 tap equations. In both ases, we hek to see if the newequations are inonsistent with the equations already in L. If they are, thensome assumption we made is inorret and we baktrak to onsider the nextase.5. Compute the next state of the blender FSM. This is always possible, as thenext state depends on the urrent state (whih we know) and the number ofLFSRs that output a one, whih we know.6. If n is more than 132, then we have found with high probability the initialstate of the enryption engine. If not, then we ontinue this searh for staten+ 1There are two ideas behind this algorithm. The �rst is that the next statefuntion for the blender FSM depends only on the number of LSFRs that outputa one. So, when we assume that the outputs of LFSR3 and LFSR4 di�er, weneed not deide whih one outputs a zero and whih one outputs a one { instead,we an just note the fat that they di�er and ontinue the searh.The other idea is that systems of linear equations in GF (2) an be quiteeÆiently examined for ontraditions.How eÆient is this attak? We provide some heuristi arguments. First,onsider the ase that all the assumed bits of LFSRs 1 and 2 and the blenderstate are orret.



With every step we learn if the sum S of the two output bits is either (a)S 2 f0; 2g or (b) S = 1. Both ases (a) and (b) are equally likely.Note Prob[S = 1℄ = 0:5, and Prob[S = 0℄ = Prob[S = 2℄ = 0:25. If S = 1,we learn one linear equation on the state bits of LFSRs 3 and 4 (namely theXOR of the two urrent output bits). If S 2 f0; 2g, we branh and onsider bothS = 0 and S = 2. Both S = 0 and S = 2 provide us with two linear equationson the state bits of LFSRs 3 and 4.On the average, we expet to learn 1.5 linear equations and branh 0.5 timesfor eah step. One we have learned in total 33+39=72 equations, we are in a leafof the branh tree and know or "have guessed" all bits in the system. The numberof suh leaves desribes the amount of work. (Note that this analysis is based onthe heuristi assumption that no equations are redundant or ontraditory, orrather, that the e�ets of redundant and ontraditory equations on the amountof work anel out.)So, our branh tree has an \average" size determined by 272=3 = 224 leaves.We initially assumed 60bits and an expet to have made a orret assumptionafter trying 259 times, whih gives us a running time of O(259+24) = O(283) onthe average.Experiments demonstrate that our heuristi arguments on the eÆieny ofthe attak are reasonable, though perhaps a bit optimisti. For a random inor-ret guess of initial state, the proedure examines an average of approximately 60million (226) states before terminating. Thus we an reonstrut the enryptionengine state in O(285) expeted time.However, for both the �rst level and the seond level keystream generator, wean take advantage of speial onditions that allow us to further optimize theattak.5 Attak on the Seond Level E0 Keystream GeneratorTo optimize the attak against the seond level keystream generator (whihprodues the observed keystream diretly), we note that the base attak is moreeÆient if the outputs of LFSR3 and LFSR4 exlusive-or'ed together happensto have a high hamming weight. To take advantage of this, we extend the attakby assuming that, at a spei� point in the keystream, the next n + 1 bits ofLFSR3 exlusive-or'ed with LFSR4 are n ones followed by a zero, where n willbe less than the length of the LFSRs. Sine LFSR outputs are e�etively randomand independent with suh a length (sine both LFSRs an generate any n+ 1bit pattern at any time with approximately equal probability if n < 32), theprobability a n + k length output ontains suh a sequene is approximatelyk � 2�n (for k � 2n).If the assumption that the LFSRs produe suh an output at the spei� pointin the keystream is false, we will fail to disover the internal state. However, theamount of work required to make that determination turns out to be rather lessthan O(285�n), and so if we have 2n or more starting plaes to test out, we



will �nd a plae where the above proedure disovers the initial state with highprobability.The expeted amount of time the base attak will take when we preonditionthe assumed outputs of LFSR3 and LFSR4 an be experimentally obtained. Theresults are given in Table 5, together with the expeted time for the full searh.Looking through this table, we an see that modest amounts of keystream reduethe expeted work somewhat, however, vast quantities of keystream redue theexpeted work only slightly further.Table 1. The expeted omplexity and plaintext required for various values of n. BaseSearh Time is the expeted number of nodes traversed in a single run of the baseattak. Expeted Plaintext Required is the expeted amount of plaintext we need toproseute the attak. Expeted Searh Time is the expeted total searh time taken.n Base Searh Time Expeted Plaintext Required Expeted Searh Time5 224:8 165 bytes 283:810 223:5 1157 bytes 282:515 222:1 33k 281:120 220:5 1M 279:525 218:8 32M 277:830 217:1 1G 276:1Formally, the algorithm is:1. Selet a position in the known keystream that is the start of more than 132onseutive known bits.2. Cyle through all possible ombinations of 4 bits of blender FSM state, 25bits of LFSR1 state and the last 30� n bits of LFSR2 state3. Compute the initial n + 1 bits of LFSR2 state that is onsistent with theexlusive-or of LFSR3 and LFSR4 onsisting of n ones and then zero.4. Run the base attak on that setting. Stop if it �nds a onsistant initialsetting.The above algorithm runs the base attak 259�n times and has a 2�n prob-ability of suess for a single loation.Note that, even though a single paket has a payload with a maximum of2745 bits, we an have onsiderably more than 2745 bits of known keystream,if we know the plaintext of multiple pakets. All the next phase of the attakneeds to know is the initial state of the seond level keystream generator for apaket { it does not matter whih. If we have multiple pakets, we an try all ofthem, and we will be suessful if we manage to �nd the initial state for any ofthem.



6 Another Attak on the Seond Level GeneratorGiven a huge amount of known keystream, there is another tehnique to attakthe seond level keystream generator more eÆiently. The basi attak requiresto assume the blender state and the states of both LFSR1 and LFSR2 (i.e.4 + 25 + 31 bits = 60bits). Now, we start with assuming only the blender andLFSR1 states (29 bits), at the beginning of the attak. During the ourse of theattak, we ontinue to make assumptions on how the blender state is updated.Denote the sum of the outputs of LFSR2, LFSR3, and LFSR4 by S. Obvi-ously, S 2 f0; 1; 2; 3g. Sine we always know (based on previous assumptions) theurrent blender and LFSR1 state, we only need to know S in order to omputethe next blender state. The urrent output bit tells if S is odd or not. Thus, weknow if either (a) S in f0; 2g or (b) S in f1; 3g.Both ases (a) and (b) are equally likely. And in both ases we learn onelinear equation, namely we learn the XOR of the output bits of the LFSRs 2{4.Now onsider the onditional probabilities Prob[S = 2j(a)℄ and Prob[S = 1j(b)℄.Assuming the three output bits are independent uniformly distributed randombits (whih they are, approximately), we getProb[S = 2j(a)℄ = Prob[S = 1j(b)℄ = 0:75:Instead of branhing, as we did in the base attak, we simply assume the likelyase S 2 f1; 2g, ignoring S = 0 and S = 3.We need 31+ 33+ 39 = 103 linear equations to entirely restore the states ofthe LFSRs 2{4. The assumptions we get here are linearily independent. If bothour initial assumptions on the 29 state bits of blender and LFSR1 and our 103assumptions on the sum S are orret, we have found restored the orret state.We an hek so by omputing Æ output bits (with Æ > 29) and omparing theoutput stream we get by our assumed E0 state with the true output stream.Within these 103 loks the random variable S takes 103 values S1; S2; : : : 2f0; 1; 2; 4g with Prob[Si 2 f1; 2g = 0:75℄. The attak works if S1 2 f1; 2g andS2 2 f1; 2g and . . . and S103 2 f1; 2g. Making the heuristi (but apparentlyplausible) argument that the Si behave like 103 independent random variables,the probability p = Prob[S1 2 f1; 2g and : : : andS103 2 f1; 2g ℄ isp = 0:75103 � 1:35 � 10�13 � 2�42:7:If the initially assumed 29 bits are orret, the attak requires less than 243 bitsof known keystream and less than 243 steps (eah step means to solve a systemof 103 linear equations). Thus the entire attak needsless than 243 bits of known keystreamand less than 272 steps.



7 Attak on the First Level E0 Keystream GeneratorTo attak the �rst level keystream generator (whih produes the initial LFSRand blender FSM states), we �rst note that the key setup sets the FSM state ofthe seond level keystream generator to be the �nal ontents of the FSM stateafter the �rst level generator has produed the last bit for the LFSR state. Wealso note that the next-state funtion of the ipher is invertible { the LFSRsan be run bakwards as easily as forwards, and the FSM next state funtion isinvertible given a urrent LFSR state. We an also test the base attak, and �ndthat it works essentially as well on the bakwards ipher as it does the forwardipher.This suggests this attak: when given one state of the level 2 generator, ylethrough all possible ombinations of 25 bits of LFSR1 state and 31 bits of LFSR2state, and use the base attak on the reversed ipher, using as the initial FSMontents the initial ontents of the phase 2 FSM. Beause we are yling throughan expeted O(255) LFSR states, and eah hek is expeted to take O(226) time,we should expet to �nd the �rst level initial position in O(281) time.8 Attak on the First Level E0 Keystream GeneratorGiven Two Seond Level KeystreamsNow, let us onsider a possible attak if the attaker has the �rst level outputfor two distint pakets that were sent with the same key. In this ase, we �rstnote that both keystreams have a lok assoiated with it, and that the lok isthe only thing that di�ers. We further note that the method of ombination islinear, hene if we know the xor di�erential in the lok (whih we do, beausewe know the atual lok values), we know the xor di�erential of the �rst levelLFSRs.We an use this to optimize the attak further, as follows, where we willindiate the two known sides with as xA and xB , and where L is a set of linearequations on the outputs of LFSR2A, LFSR3A, LFSR4A.Assume the ontents of LFSR1A (whih also gives you LFSR1B, beause ofthe known di�erential between the two).Initialize the set L to empty.Perform the following depth-�rst searh1. Call the state we are examining n. Compute the output nA, nB ofLFSR1A, LFSR1B, the previous output of the blender FSMs basedon the urrent state), and the known keystream bit ZnA, ZnB. If our as-sumptions are orret to this point, this must be equal to the exlusive-or of the outputs of LFSR2A, LFSR3A, LFSR4A and of LFSR2B,LFSR3B, LFSR4B.2. Chek the known di�erential in LFSR2A, LFSR3A, LFSR4A, LFSR2B,LFSR3B, LFSR4B to see if there is a setting of those bits that satisi�esboth the known xors and the known di�erentials. If there is not, thenbaktrak to onsider the next ase.



3. If we reah here, there are four possible settings of the outputs of LFSR2A,LFSR3A, LFSR4A whih are onsistent with known xors and di�eren-tials. At least two of those settings will also update both blender FSMsidentially, and will di�er in preisely two bits. Here, we branh andonsider three ases: one ase that orresponds to the two settings whihupdates both blender FSMs identially, and the other two ases orre-sponding to the other two settings. For the �rst ase, we inlude in Lthe linear equation implied by the two bits that di�er, and the linearequation implied by the third bit setting. For the other two ases, weinlude in L three linear equations giving the three bit settings.4. If n � 31, then we inlude in L the linear equation implied by theLFSR2A tap equations.5. If n � 33, then we inlude in L the linear equation implied by theLFSR3A tap equations. If n � 39, then we inlude in L the linearequation implied by the LFSR4A tap equations. In all three ases, wehek to see if the new equations are inonsistent with the equationsalready in L. If they are, then some assumption we made is inorretand we baktrak to onsider the next ase.6. Compute the previous state of the blender FSMs. This is always possible,as the next state depends on the urrent state (whih we know) and thenumber of LFSRs that output a one, whih we know.7. If n is more than 128, then we have found with high probability the initialstates of the enryption engines. If not, then we ontinue this searh forstate n+ 1Experiments show that the above proedure examines an expeted O(251) nodesduring the searh.9 Attak Against Full E0Below is how we an ombine these attaks into an attak on the full E0 enryp-tion system.Assume we have an amount of known keystream generated with an unknownsession key, whih may be from a single paket or it may be from multiplepakets. We selet n based on the amount of known keystream. We an thenuse the attak shown in Setion 5 to �nd the initial LFSR and blender FSMsettings for a paket generated by that session key. If the ost of �nding theinitial LFSR and blender FSM settings for a seond paket is less than O(281),then we �nd a seond one. Then, we either use the attak shown in Setion 7 to�nd all possible initial LFSR settings that generated that initial setting (if wehave one initial LFSR setting), or we use the attak shown in Setion 8 if we havetwo initial LFSR settings. One we �nd the initial LFSR settings that generatesthe observed output, we an step the LFSRs bak 200 yles, and use lineartransformations to eliminate the Bluetooth address and the blok to reonstrutthe session key K 0C , and verify that potential key by using to to derypt otherpakets.



If we denote the amount of e�ort to �nd a LFSR and blender setting givenn bytes of known keystream as F (n) (see table 5), then the total e�ort for thisattak is O(min(F (n) + 281; 2F (n=2) + 251)) work:This is O(284) if you have barely enough keystream to uniquely identify thesession key (eg., 140 bits), and drops to O(277) if you have a gigabit of knownkeystream.We an further redue the e�ort down toO(273) work;if about 14000 gigabit bits of keystream are available. We simply use the attakfrom Setion 6 twie, to reover two states of the level 2 generator, and thenontinue with the attak from Setion 8.These results are summarized in Figure 2.
86

82

78

74

72

80

84

70

76

L
og

2 
E

xp
ec

te
d 

W
or

k 
E

ff
or

t

30 40 5020100

Log2 Available KeystreamFig. 2. Expeted work e�ort required to reover session key, versus known keystream.



10 Conlusions and Open ProblemsWe desribed methods for rederiving the session key for E0 given a limitedamount of known keystream. This session key will allow the attaker to deryptall messages in that session. We showed that the real seurity level of E0 isno more than 73{84 bits (depending the amount of keystream available to theattaker), and that larger key lengths suggested by the Bluetooth spei�ation2would not provide additional seurity.We empiially observed that the tehnique from Setion 6 (assume theblender state and LFSR1 only, and build up a set of equations based on thestates of LFSR2, LFSR3 and LFSR4) posed some pratial problems, beausethe equations reated are rather omplex. Also, the tehnique requires a hugeamount of known keystream. It would be interesting to develop improved teh-niques to handle the set of linear equations more eÆiently. Also, it would beinteresting to redue the required amount of known keystream.Another approah for more pratial attaks on E0 and Bluetooth would beto exploit the weak mixing of the lok into the �rst level LFSRs, whih will, atattaker known times, leave three of the LFSRs with zero di�erential.Referenes1. Bluetooth SIG, "Bluetooth Spei�ation", Version 1.0 B,http://www.bluetooth.om/2. P. Ekdahl, T. Johansson, "Some Results on Correlations in the Bluetooth StreamCipher", Proeedings of the 10th Joint Conferene on Communiations and Coding,Obertauern, Austria, Marh 11-18, 2000.3. J. Goli, Eurorypt 1997.4. M. Hermelin, K. Nyberg, "Correlation Properties of the Bluetooth Combiner", pro-eedings of ICISC '99, LNCS 1787, Springer, 1999.5. M. Jakobsson, S. Wetzel, "Seurity Weaknesses in Bluetooth", RSA Conferene2001.6. M. Saarinen, "Re: Bluetooth und E0", Posting to si.rypt.researh, 02/09/00.7. K. Zeng, C.-H. Yang, T. Rao "On the Linear Consisteny Test (LCT) in Cryptanal-ysis with Appliations", Crypto '89, Springer LNCS 435, pp. 164{174.
2 \For the enryption algorithm, the key size may vary between 1 and 16 otets (8-128bits). The size of the enryption key shall be on�gurable for two reasons. [First isexport provisions℄. The seond reason is to failitate a future upgrade path for theseurity without a ostly redesign of the algorithms and the enryption hardware;inreasing the e�etive key size is the simplest way to ombat inreased omputingpower at the opponent side. Currently (1999) it seems that an enryption key size of64 bits gives satisfying protetion for most appliations." [1, Setion 14, page 148℄


